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1. INTRODUCTION

The concept of composite materials and structures appears to be as

old as mankind; but it is only in recent years that the true technological poten-

tial of such materials has begun to be recognized and exploited. The following

lines are an admirable summary of the meaning and significance of the modern

composite material concept:

"More important than any one new material or any one new application

is the new "materials" concept itself. It marks a shift from concern with

substances to concern with structures, a shift from artisan to scientist as

man's artificer, a shift from chemistry to physics as the basic discipline,

and a shift, above all, from the concrete experience of the workshop to

abstract mathematics, a shift from starting with what nature provides to what

(*)
man wants to accomplish." - Peter F. Drucker - The Age of Discontinuity

From the engineering point of view the most important type of composites

at the present time are Fiber Reinforced Materials (from now on abbreviated FRM).

The idea behind this kind of material is simple and the results are startling.

The very high strength of various kinds of fibers of minute cross sections is

exploited by embedding them in a relatively soft matrix. It thus becomes pos-

sible to manufacture materials whose strength and stiffness is comparable to that

of the strongest metals and whose specific weight is as low as one third of

that of steel.

"'I am indebted to Harper and Row, Publishers, for permission to quote

this material.



This combination of high stiffness and strength with low weight makes

these materials natural candidates for aerospace applications. Such applica-

tions have been the chief motivation for the intense research and development

activity concerning FRM in the last decade.

If the engineer is to use these new materials with confidence, he must

have detailed and reliable knowledge of their physical properties. While

for conventional engineering materials, such as metals and plastics, physical

properties are almost exclusively determined by experiment, such an approach

is impractical for FRM because of their great structural and physical variety.

Typical aspects of internal structure of FRM are: volumes occupied by fibers

and matrix, directions of fiber reinforcement, shapes of fiber cross sections

and the relative positions of fibers. Variation of these geometrical parameters

alone leads to an enormous number of possibilities.

Additional variety is introduced by choice of constituents. At the

present time fibers are chiefly made of Glass, Carbon, and Boron while matrices

in use are plastics such as epoxy and lightweight metals such as Aluminum

and Magnesium.

More variety is introduced by the scope of physical properties which

must be studied. Of primary interest are: elasticity, time dependence (e.g.

viscoelasticity), thermal and electrical conduction, dielectric and magnetic

properties, themomechanical behavior, yielding and strength, fatigue and

dynamica I characterlu_ics.



Finally, it should be noted that FRMare anisotropic, which requires

in each case the determination of a whole set of physical constants to account

for properties in different directions.

It is seen that a purely experimental programto study physical properties

would call for a stupendous number of experiments. Even if such experiments

were carried out it is hardly likely that the resulting multitude of experimental

data could lead to guide lines for the engineer.

A more hopeful avenue of approach is to construct a theory of FRM

whose predictions shall have to be verified by experiment. Not only is such a

theory necessary to determine the properties of materials in use. More

important, it is indispensable as a guide to design materials with required

properties, which is the ultimate goal of materials engineering.

Theory of composite m_teLials, in general, and of FRM, in particular,

has been the subject of a very large number of papers and reports, most of

which have been written in recent years. Many different approaches to the

very difficult problems involved have been proposed, some of which are rigorous

while others are based on assumptions and approximations whose validity is

hard to assess. It is not the purpose of the present report to review the

voluminous existing literature (*)',it is an attempt to present a theory of FRM

which is reasonably rigorous and is at the same time oriented towards the

engineering uses of such materials.

(*) References [1.1-1.127 which are, except for [1.47, collections of

papers and chapters by different authors cover a great variety of important aspects

of modern composite materials research.



The most basic FRMis uniaxially reinforced (or may be so idealized),

that is to say, the fibers are all in one and the samedirection. This report

is primarily.concerned with such materials. Engineering applications frequently

make it necessary to lay the fibers in two or more different directions, thus

producing biaxially or multiaxially reinforced materials. Such materials

mostly consist of laminated layers of uniaxially reinforced material and

are thus called laminates . Once the properties of the uniaxial laminae

are known, laminate theory serves to analyze laminated structures. Examples

of this approach are discussed in this report.

The presentation of theory of FRM in this report begins with description

of geometry of FRIk4,Part. 2, Part 3 is devoted to elastic analysis of FRM,

Part 4 deals with viscoelastic static and dynamic properties; Part 5 is

concerned with thermal and electrical conduction, dielectrics and magnetics.

In Part 6 there is given a theory of thermoelastic behavior. Part 7 discusses

the very difficult problem of strength prediction. This material is to be regarded

primarily as qualitative, as work to date in this area has not reached the quan-

titative analytical level of the material given in Parts 3-6.

An important and satisfying aspect of the theories presented is the close

mathematical interrelationship between elastic theory and theories of other

physical behavior. Thus it will be seen that viscoelastic properties of FRh4

are directly related to elastic properties by simple mathematical analogies.

Thermal and electrical conduction, dielectrics and magnetics present one and

the same mathematical problem which is found to be analogous to a certain elastic



problem arising in shearing of FRM. Finally, the thermal expansion coefficients

of composites can be expressed in terms of their elastic properties. It is

thus seen that theory of elastic properties of FRM is of pivotal importance

in the whole development.



2.1 FIBROUS AND FIBER REINFORCED MATERIAL

Consider a two phase material whose phases are of cylindrical shape,

with all generators oriented in one and the same direction. For convenience

and without loss of generality we shall mostly be concerned with ma-

terial specimens of cylindrical shape with generators parallel to phase region

generators, figure 2.1.1. It shall be also assumed that phase cylindrical

regions continue without interruption from base to base of the cylindrical

specimen. The material thus described is called a fibrous material (hence-

forth abbreviated FM). Its geometry is completely described by the plane

geometry of any transverse cross section.

The cylindrical specimen is referred to a cartesian system of axes

x i. x 2, x 3 where x I is in generator direction and x 2 , x 3 are in the plane of

the transverse cross section. The two phases are arbitrarily assigned the

numbers 1 and 2. The cross section area is denoted A and is bounded by

a plane curve C. The phase partial areas are A l, A2,respectively, and the

aggregate of arcs common to both phase regions is denoted C 12"

In the three dimensional description of such a specimen of height H,

the specimen volume is denoted by V with phase volumes V 1 and V2 , occupy-

ing regions R 1 and R2. The spec imen is bounded by the surface S which is

composed of the curved cylindrical surface Sc and the lower and upper faces

A° and AH • The aggregate of phase cylindrical interfaces is denoted S12.

Fig. 2.1.1.



The phase volume fractions v 1 , v 2 are given by

V 1 A 1

Vl= V A
(2.i.i)

v2 (21.2)v2:-0----i-

Obvious ly

v 1 +v 2 = 1 (2.1.3)

In the most general kind of fibrous material there is no specific geo-

metrical distinction between the two phases. If we impose the topological

restriction that one of the phases is in the form of cylinders which are com-

pletely embedded in the other phase, we shall call the embedded cylinders

the fibers and the embedding phase the matrix. The two phase material in

that case is called a fiber reinforced material henceforward abbreviated FRM.

See figure 2.1.2 for an example of such a material.

As a further restriction it may now be assumed that the fibers are of

specified shapes, e.g. circular, elliptical or diamond shaped, however,

their locations within the cross section are random. The resulting geometry

has deterministic as well as random features and is therefore called semi-

random.

We shall now consider a certain semi-random FRM which is of funda-

mental importance in theory of FRM. We construct composite circular

cylinders each of which is made of a circular cylindrical fiber and a concentric

matrix shell. In the n th composite cylinder the fiber radius is a and the
n



composite cylinder radius is bn. In all composite cylinders the ratios an/b n

are identical and the cylinders are all of equal height H. Now a cylindrical

specimen of height H and cross section A is progressively filled out with non-

overlapping composite cylinders. This is done by first placing a number of

such composite cylinders into the specimen and then filling out the remaining

spaces by smaller and smaller composite cylinders. At each stage of filling,

the volume V consists of Vc, the volume filled out by composite cylinders,

and the remaining volume V'. At the same time, a portion A of the section
c

is filled out by composite circles and there remains the area A', fig. 2.1.3.

Since composite cylinders are assumed to be available in all sizes, the

remaining volume V' can be made indefinitely small by progressive filling

and in the limit the volume V consists entirely of non-overlapping composite

cylinders. The resulting material is semi-random and Is called composit9

cylinder assemblage. It has been introduced as a FRM model in [3. I0] and

its detailed analysis for various kinds of physical properties will be given

in subsequent chapters.

Finally we may consider a FRM whose geometry is specified in all

details. While in principle any of the previous kinds of geometr|e s may be

completely specified, such minute specifications would be completely

useless from any practical point of view. Complete specification of geometry

is practically feasible only when this can be done in terms of a small number

of geometrical parameters. The most important cases of deterministic geo-

metry are, therefore regular arrays of identical fibers. Figures 2.1.4,



I0

2.1.5, 2.1.6 show rectangular, squar_ dnd hexagonal arrays, respectively

of identical circular fibers.

The arrays listed above are important examples of materials which

exhibit various geometrical symmetries. It is to be noted in this respect that

by definition the transverse x 2 x 3 plane is a plane of geometrical symmetry

in any fibrous material or uniaxially FRM. The rectangular array has two

additional planes of symmetry, namely the x I x 2 and x 2 x 3 coordinate

planes, thu_3 in all three mutually perpendicular planes of symmetry. Such

a material is called geometrically orthotropic.

The square array is a special case of the rectangular array. The

additional symmetry is in that the x I axis is an axis of two fold symmetry,

by which is meant that the x 2 x 3 plane geometry has the two perpendicular

axes of symmetryx 2 and x 3 . A material having this kind of symmetry is

here called geometrically square symmetric.

The hexagonal array has an x I axis of three fold symmetry as it is

seen that there are now three angularly equally spaced axes of symmetry in

the x Z x 3 plane.

The various symmetries of FRM are a mos{ important aspect of the

subject and we shall return to them later on in relation to the concept of

material symmetry.

Frequently, technological applications require biaxially or multiaxially

FRM. Such materials are usually produced as laminates of uniaxially reinforced

parallel layers, the reinforcement direction being different in adjacent layers.

A short discussion of such FRM is given later in chap. 3.10. For geometrical

examples the reader is referred to fig. 3.10.i.
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2.2 STATISTICAL GEOMETRY (*)

As will be seen later on, the physical properties of a FRM depend in

general upon all the details of the phase geometry. Specification of random

or semi-random geometry in minute detail is, however, a hopeless task.

Even if this were done for one specimen not much would be achieved, for

another specimen would have different phase geometry details . Unless the

geometry is simply deterministic as in a regular array, the details cannot

be controlled by the FRM manufacturer. It is therefore necessary to consider

global geometrical information rather than detailed one, and this is best

done by means of statistics and theory of random processes.

Consider a collection of N fiber reinforced (or fibrous ) cylindrical

specimens. The specimens have the same external geometry, however,

their phase geometries, i.e. internal geometries may be quite different.

Each specimen is referred to the cartesian system of axes, x 1, x 2 , x 3 des-

cribed in 2.1.1 and moreover, the origin of the system of axes is at the

same point in each specimen. In the language of theory of random processes,

such a collection of specimens is called an ensemble and each specimen

is a member of the ensemble.

We now consider the same point B with position vector x in all

members of the ensemble and we pose the question: what is the probability

that the point is in either one of the phases ? To answer this question we

(*) This chapter is not absolutely required for most of subsequent development.
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perform in our minds a counting experiment. We denote by N 1 the number

of specimens in which B is in phase 1 and by N 2 the number of specimens

in which B is in phase 2. Then the probabilities P1 ' P2 that B is in R 1

or R2 respectively are defined by

N 1

P(B :_ R 1) = P1 (r0 = _im

N -e

(2.2. l)

N 2

P(BmR2) = P2 _ = _im

N _ co

The existence of the limits in the extreme right sides of (2.2.1) is a

question of fundamental importance in probability theory and in order to avoid

this difficulty modem probability theory has been based on set theory. Such

discussions are not within the scope of the present treatment and the in-

terested reader is referred, for example, to [2.1] .

The probabilities (2.2.1) are known as one point probabilities.

Similarly two point, three point and multipoint probabilities may be defined.

Consider two points, B 1, B2 in each specimen member of the ensemble•

1 x 2which have the same position vectors x and _ in each specimen. There

are now four two point probabilities which are defined as follows:-

Nll
P(BI=RI• B2 _ R1) = Pll__. 1• _x2) = _im

P(BImRI B2 "_ R2)= PI2_-I 2)= _im NI2
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P(B 1

P(B 1

-" R2' B2 _ RI) = P21 _I' x-2) =

, x_Z)=
R 2 B 2 m R2) = P22 '

N2 1
im

N

_im N2---_2
N

N-_ _

Here N is the number of times that both points fall simultaneously into
ii

phase i, with analogous interpretations for NI2, N 21 _ N22"

It is to be carefully noted that while it is theoretically possible for

a point to be on the phase interface such a possibility can be ignored since

the number of points inside the phases is infinitely larger than the number

of points on the interfaces. In the language of probability theory, the pro-

bability of a point falling on the interface is assigned zero value.

There are similarly eight three point probabilities and in general 2 n,

n point probabilities. Such n-point probabilitles may be •"-_*+ the form

Pi I, 12,...i

2 n

n ,x .... x)

where each of the subscripts iI, i2,...In assumes either one of the phase

numbers 1, 2 and its position in the subscript sequence is attached to that

of the corresponding position vector within the parenthesis.

There is, of course, no difficulty to define the same kind of multi-

point probabilities when there are more than two phases.

The probability functions defined above obey the obvious relations

P l (x) + P2 (_X_)= i (a)

x2)+ x_z)=pI I) (b)PII ' -- PI2 '

(2.2.2)

(2.2.3)



zP,.ilo )= 1
11

14

= P2 __l) (c)

(d) (2.2.4)

Again similar relations are easily established for any number of points

and any number of phases.

The reader will have noticed that the preceding discussion has not

really been concerned with the specific case of fibrous materials but ap plied

to any kind of heterogeneous material. The distinctive feature of the fibrous

material is that its phase geometry is independent of the longitudinal x 1

coordinate. Hence for such a material all the multipoint probabilities are

independent of the x 1 coordinate and it is therefore sufficient to consider

points which lie in the same cross section. Therefore, the ensemble of

cylindrical specimens may be replaced by an ensemble of two phase cross

sections, each of which is referred to a plane cartesian system x 2, x 3

and all position vectors are in the x 2 , x 3 plane. Thus all vector variables

in (2.2.4) lie in the x 2 x 3 plane.

It may in general be safely assumed th_ _1 multipoint probability

functions are continuous functions of position, because of the smoothening

out effect of the, in theory, infinite number of ensemble members.

We now proceed to define the very important concept of statistical

homegeneity s henceforward abbreviated as SH. For this purpose, the system

of n points entering into (2.2.3) may be considered as a rigid body which

is described by the vector differences
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1 1 n 2 2 n n-1 n-1 n
r =x -x ,_r =x -x ,..._r =x -x (2.2.5)

Suppose that any multipoint probability such as (2.2.3) depends only

on the relative configuration of the points and not on their absolute position

with respect to the coordinate system; then the ensemble is called statisti-

cally homogeneous. Mathematically this means

P. , P ..... _I x2 "xn) = Pi.' "" ' i2"'i (rl
2 n-1

_ ,x ,,.,_r ) (2.2.6)
ii 12 In I n

The meaning of this statement is that in the counting experiments to deter-

mine probabilities which were described above, it is not important where

the n point system is located within the ensemble members.

Statistical homogeneity is a theoretical assumption which is funda-

mental in theory of heterogeneous media. It plays the same role as the

assumption of homogeneity 'constant prope_ies) in c!ass'ical continuum

theories. Neither one of these assumptions is ever literally satisfied but

in their absence theories become hopelessly difficult.

A most important aspect of SH is expressed by an erqodic type

hypothesis. It is assumed that in a SH ensemble the counting experiment

for the determination of any n point probabilities may be performed by moving

the rigid n point system through a large number of positions within any on_._eo

member of the ensemble. This hypothesis is fundamental for the actual ex-

perimental determination of a probability function. It is hardly possible

for the experimenter to make a large enough ensemble. Instead he simply

considers one typical case.
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We now consider the consequence of the SH assumption for the pro-

bability functions (2.2.1). The one point probabilities (2.2.1) cannot be

functions of position and are therefore constant. Furthermore, in view of

the ergodic Hypothesis, the one point probabilities can be obtained by ran-

domly throwing a point into on_..._especimen a very large number of times and

counting N 1 and N 2 , as defined in (2.2.1). It is, therefore, clear that the

one point probabilities are just the volume fractions (2.2.1-2) , so

P1 =Vl

P2 = v2

In view of (2.2.6) the two point probabilities (2.2.2) now assume

the form

Pij _1

where

2
r=r

, xJ)= Pij (-q)

1
-r

The two point probabilities do not have as simple an interpretation as the

one point probabilities. They have in general to be found by a scanning

experiment or on the basis of plausible theoretical assumptions. However,

some important general aspects of these quantities are readily deduced.

We firstconsider the case

Then

PII (°) = P1 = Vl

P22(°) = P2 = v2

P12 (o) = P2 1 (o) = 0

when the two points coincide, i.e. _.r vanishes.

(a)

(c)

(2.2.7)

(2.2.8)

(2.2.9)

(2.2.1o)
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The first two results stem from the fact that since the points coincide

the two point probability becomes a one point probability. The result

(2.2.10c) is due to the neglect of the probability of a point falling on

an interface.

Next, we consider the case when the two points are infinitely

apart, i.e. r = l_rl -._ • In this event we make the assumption that

whatever happens at one point is independent of what happens at the other

point. This situation is expressed in statistical language as statistical

independence. If two events are statistically independent the probability

of their simultaneous occurrence is simply the product of the probabilities

of their individual occurrences, see e.g. [2. i]. The events are in the

present case the falling of points into a certain phase. We thus conclude

that

Pij(-'r) = Pi _l) Pj _2) =vivj
(2.2.ii)

r --_

The last equality in(2.2.11) follows from (2.2.7). In detail (2.2.11) are:

2 2

Pll =Vl ' P22 =v2 ' P12 = P21 =VlV2

It is seen that the sum of these probabilities (2.2.12) obeys (2.2.4d), as

it should, because of (2.1.3).

A typical plot of a two point probability function is shown in fig. 2.2.1.

Another fundamentally important feature is statistical symmetry. In

chapter 2.1 we have discussed certain geometrical symmetries and all of

(z.2.12)
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these have statistical counterparts. From the practical point of view only

statistical transverse isotropy is of importance since this kind of symmetry

is frequently obtained when the fibers are randomly placed. Orthotropy and

square symmetry appear for the deterministic periodic geometries described

in chapter 2. I. It is hard to imagine a random geometry with this kind of

slat istica i symmetry.

Itwill be recalled that in a fibrous material the position vectors

appearing as arguments in the probability functions can without loss of

generality be taken as plane vectors in a transverse plane. Statistical

transverse isotropy (abbreviated STI) requires that all multipoint probability

funct ions be not affected by rigid body rotations of the plane point system with

which they are associated. The simplest example is a one point probability

function P__). In the case of STI

P _J =P(x)

where x is the magnitude of the vector x.

It should be carefully noted that SH and STI are independent properties.

We shall, however, not be concerned with STI geometry which is not SH.

If the geometry fulfills both requirements we conclude that the values of

the one point probabilities remain as given by (2.2.7).

The only difference in the two point probabilities is that now

Pij (£) = Pij (r)

where r is the magnitude of

of course, the same. For further discussion of statistical geometry the reader

is referred toe.g. [2.2-33 •

(2.2.13)

(2.2.14)

r. The results (2.2.10) and (2.2.11-12) remain,
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3. EIASTIC1TY
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We shall here be concerned with the derivation of some theorems for

second rank tensor averages, which are fundamental in the theory of hetero-

geneous materials. It is emphasized in advance that these are general con-

tinuum mechanics theoren_'sard do not presuppose any kind of specific

mechanical behavior of the material. The theorems hold for homogeneous as

well as multiphase bodies. For the sake of simplicity they will be derived

for the specific case of a two phase body.

It is assumed that the reader has some knowledge of continuum

mechanics and cartesian tensors. Subscripts used range over 1,2,3,repeated

subscripts denote summation over their range and a comma before a subscript

denotes partial differentiation with respect to the space coordinate associated

withthe subscript. Aposition vector with cartesian components x l,x 2,x 3 is

denoted x.

3. i. 1 Average Strain and Strain Rate Theorems

Consider a two phase body with phases occupying regions R 1 and R 2.

(1) u(2)The displacement fields in the phases are u. _,t) and . (x_,t)where t is
1 1

the time . Associated with these are velocity fields v(1)__,t), and v (2).__,t) where
1 1

_u
i

v.- -(i

The volume V of the two phase body, the phase volumes V 1 and V 2 , the

bounding surface S, and the interface S12 may all be time dependent. The

velocities are prescribed on S ,i.e.

(3.1.1)
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O

vi (S)= vi

(3.1.2)

Also the velocities are continuous within the phases and at the interface, the

last condition being expressed by

v(I)= v (2) on (t)
i i S12 "

(3.1.3)

Define the strain rate tensor Yij by

1
= _ +V .)

Yij 2 (vi,j j,1
(3. i .4)

i

The volume average %'ij of Yij is given by

1 /V _X_,t)dV_ij (t) - v Yij
(3.1. s)

The average strain rate theorem is expressed by the statement

i / o o
ij (t) = 2-T $ (v i n.] +vj nl ') dS

(3.I..6)

It should be noted that the components of the normal, n i, in (3. i. 6) are time

dependent since S is time dependent

Proof: Substitute (3.1.4) into (3.1.5) and use the extended divergence

theorem (see appendix of chap. 3.1). Then

- 1 (v! 1) n I +v n i) ds +2Yij(t) = T I j

s I

/ (vi(2) nj+ v(j2)n.)1 dS]

S 2

where S 1(t) and S2 (t) are the bounding surfaces of the phase regions R 1 and R2 .

Now each of S 1 and S2 is at most composed of part of the external surface S

and the interface S 12" Therefore (3. I. 7) may be rewritten

(3.1.7)
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2 YiJ n. +v, n,) dS +
] ] 1

/
S
12

(l)
(vi

(I) n.) dS
1

+
v (2) nj v12)n i)dS 1(i +

S
12

(3. i. 8)

It is to be carefully noted that in the divergence theorem n, is always the
1

outward normal. At the interface S12 the outward normal reverses sign accord-

ing to whether it is taken from the inside of R 1 or R2 . Therefore at each point

on S12 the n, in the second and third integrals in (3.i. 8) are of oppositeI

signs. This in conjunction with (3.1.3) makes S12surface integrals in (3.1.8)

cancel one another and consequently the result 3. I.6 follows

We now proceed to prove an important corollary of (3.i. 6): If

O

v,1 (s) = _ ij (t) xj (3.1.9)

then

- O

ij (t)= y ij (t)

Proof: Substitute (3.1.9) into 3.1.6). Then

_ ,[o/_ij(t)- 2v vik(t) xk n. dS + o (t)] _/jk

By the divergence theorem

/xkn. dS = fx k
S ] V 'J

dV = V6
kj

/x_ n, dS ]
S i

(3. i. 10)

(3.1.11)

xk n. dS = /Xk, i
S _ V

dV = V6
ki (3.1.12)
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where 6kj' 6ki are Kronecker delta.

Substitution of (3.1.12) into (3.1.1t) immediately leads to (3.1.10)

Average small strain theorems may be derived in a completely

analogous fashion. The strains ¢ij are defined by

1

ij t' t) = -_- (ui, j [X_,t)+ u.,i(x,t)])
(3.1.13)

Ifthe displacements are prescribed on S, i.e.

o
u.(s, t) = u

1 i

and

u(1)1" = u(2)1. on S 12 (t)

ther

I ..-(t)- 1 fo o
2V (u i n + u n ) dSj ] l

S

Also if

then

u. (s, t)= oc.. (t) x.
l i] ]

- 0
¢,. (t)=_,.. (t)
i] i]

It should, however, be carefully noted that while

v.. __., t) = _.. __, t)
i] I]

in general

vii
(t)

ij

(3.1.14)

(3.1.15)

(3.1.16)

(3.1.17)

(3.1.18)

(3.1.19)

(3.1.20)
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The reason for the inequality is clearly seen when (3.1.16) is differentiated

with respect to time. Because of the time dependence of V, S and n. in (3.1.16)
i

the time derivative of the right hand side is not equal to (3•1.6). Equality

occurs in (3.1.20) if,and only if,the geometry of the body is time independent.

3.1.2 Average Stress and Stress Rate Theorems

Next we consider average stress and stress rate theorems. Let the

stress field inside the body be q.. (x_,t) and the body force field per unit
i]

volume be F. _, t). The body is assumed to be in quasi-static equilibrium,
1

so that at every point

+F. =0 (3.i.21)
ij ,j 1

and also

6 + P. = 0 (3.1•22)
ij,j i

On the external surface S the tractions are prescribed

T °T. (S, t) = q. n. = . (3.1.23)
i l] ] l

At the interface the tractions are continuous

T!I) -- o(1)n..... = T!2) = (7(2) n. on S
i] } z I] ] 12

(3. i. 24)

Equation (3. i .24) involves a tacit sign convention with respect to the

normal at the interface, which should be clarified. It is customary to take a

normal at a surface in the outward direction. While "outward" is clearly

defined at the external surface S, this is not the case at the interface for

what is outward with respect to R 1 is inward with respect to R2 . It is
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understood in (3.1.24) that the normal components on both sides refer to the

same vector, outward into R1, say, and consequently inward into R2 (or

vice versa). If it is desired to preserve the outward sense of the normal

with respect to both phases at the same time, then one of the sides of (3.1.24)

must be given a minus sign.

The average stress is defined by

aij (t) - V _ij _' t) dV

Then the average stress theorem asserts that

, [ix. .dS+Sx,'.d'}
S l l V I

Proof: We firstprove the identity

Evidently

(3.1.25)

(3. i .z6)

g.. = ( _., x.) +F. x. (3.1.27)
l] iK ] ,k 1 ]

(aik xj) = = -,k aik,k xj + aik 6jk F.lx._ + a..1]

where the last step follows from (3.1.21). This establishes (3.1.27). Now

(3.1.27) is introduced into (3.1.25)and the divergence theorem is applied. Then

- 1 [ / .(1)n(:)dS + S x' "(2) n(k2)dS +S FixjdV 1
oij (t) - V Sl xj ik $2 ] ik V

, (3.1.28)

which may be rewritten in the form
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1[jsoij (t) = o(i) (i)x nk dS + x. n dS] qik ] ik

12

f f ]+ x. o n dS + Fix. dv (3.1.29)] J
812 V

The superscripts on the normals indicate component of outward normals

with respect to surfaces enclosing R 1 and R2 , because of the application

of the divergence theorem. Because of (3.1.24) and the normal sign convention,

as explained above, the integrands of the interface surface integrals in (3.1.29)

cancel one another at each interface point and thus the two interface surface

integrals cancel. Then in view of the traction definition (3.1.23) , (3.1.29)

immediately reduces to (3.1.26).

Also, since

o (x_, t)= o.. (__, t)
ij ]i

it follows that

o.. (t)= o.. (t) (3.1.30)
i] ]i

Therefore (3.1.26) can be symmetrized in the form

o,,(t)= =;:..[/" (x,r, + x.T.)dS + (x,F,+ x. (3.i.

Precisely the same result holds for stress rates when (3.1.22) is fulfilled,(3.1.24)

is replaced by traction rate continuity and i(3.1.23) - by prescribed traction rates.

Then,
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[/ i ]_ij (t) = -V- xj T. dS + xj F i dV
1 v

= l-l- +x iTj )dS + F i+x iFj ) d
2V i V

(3.1.32)

Again itshould be noted that because of the time dependence of V, S and S

(3.1.32) is not the time derivative of (3.1.31).

if, the geometry is time independent.

If

12'

This becomes true if, and only

We now prove an important corollary which is similar to (3.1.17 - 18).

0

T i (S,t) = e_ij (t) nj

F. __, t) =0
I

then

I

I o_ij (t) = o ij (t)

Proof: Substitute (3.1.33-34) into (3.1.29). Then

(3.1.33)

(3. i. 34)

(3.1.35)

i o #
_il (t) = -_- _ik (t) j xj n k dS

S

and (3.1.35) follows immediately by use of (3.1.12).

By precisely the same proof we also have: If

" "O

T (S, t) = a.. (t) n.
1 11 ]

(3.1.36)

F i (__., t) = 0 (3.1.37)
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then

" "o
c (t) = (_.. (t) (3.1.38)
i] i]

3. I. 3 Average Virtual Work Theorems

The third class of theorems to be proved are virtual work type theorems.

We shall prove such theorems in detail for stresses and strains and then we

shall write down corresponding theorems for stress and strain rates by analogy.

Suppose that within a two phase body the displacement field u. __, t)
I

is continuous and obeys (3. I. 15). The associated strain field is given by

(3.1.13). Also considera stress field a.. __, t) within the same two phase
i]

body which may be unrelated to the strain field. The stress field obeys

(3.1.21) with vanishing body forces and alsothe continuity condition (3.1.24).

The strains and stresses at each point are split into averages and

deviations from the average, thus

t

_.[j (a, t) = _ij (t) + _ ij _' t) (3.1.39)

(_ (K, t) = _ (t) + e',. (K, t) (3.1.40)
ij ij 11

It follows from the definition of the volume average and (3.1.39-40) that

f# (K, t) dv = J_'.. (x_,t) dV = 0

£

lj 1]
V V

It then follows from (3.1.39-41) that

/ - _ /
I _ V °ij _ij dV = oij ¢ij V + V q'ij ¢ij'

(3. I .41)

dV (3.1.42)
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The strain field ¢,. (t)
i]

is derivable from a displacement field

O

u = e.. (t) x. (3.1.43)
i i] ]

Therefore the displacement at each point in the body may be written as

o u_u. (x_,t) = u. + _x_,t) (3.1.44)
1 1 1

where

e' _ 1 (ut +u'..) (3.1.45)
ij 2 1,j ], 1

Now o..
i]

(t) is not space dependent and it therefore trivially satisfies equilibrium

without body forces. Since o.. also satisfies equilibrium it follows from (3.1.40)
i]

that

_' = 0 (3. I .46)
ij ,j

in view of (3.1.45-46) the theorem of visual work (see append_ to chap. 3. !)

is applicable to the second integral in the right side of (3.1.42). Thus

i, f, , f j(1)nj(1)u (.1 f _:(2)n(2)u,(2)dS
V gij ¢ij dV: . (;; [ ) dS + . . .

S 1 $2 i] ] l

which may be rewritten as

f f ,(1)I' = _' nj u' dS + _,(1) n(1) u dS
S ij i ij j i

S12

+ f c,(2) n(2) u,(2) dS
ij j i

S12

(3. i .47)
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In view of (3.1.43-44) and (3.1.15), the displacements u'. are
1

continuous across S12 • Also in view of (3.1.40) and (3.1.24) the tractions

_' nj are continuous across the interface S12. Thus the integrands in thetj

S12 surface integrals in (3.1.47) cancel at each point because of difference

in normal sign convections involved in (3.1.24) and the divergence theorem,

respectively. Therefore, we have the result,

/
I = Gij _ij V+ g'.. nj u'. dS

S i] I

(3.1.48)

The result (3.1.48) leads to the following two theorems

(a) If on the bounding surface of the heterogeneous body the displacements are

u.(S t) = o• c., (t) x, (3.1.17)
i i] ]

then

o (t)
I = _i} (I:)¢ij (t)V = oij (t) i] V

(b) If on the bounding surface of the heterogeneous body

(3.1.49)

! o
[ Ti (S, t) = vii (t) n.3

then

: - - 0 -

I = c7, (t) (t)V = _., (t) (t)V
! lj ¢ij l] eij

i ............................................................ ,

These theorems will be called the averaq.e theorems of virtual work.

(3.1.33)

(3. i .50)

Proof: Consider first (3.1.17). In view of (3.1.43-44) , (3.1.17-18),

u °. (S) = 0, and consequently the second integral on the right side of (3.1.48)
1

vanishes. This establishes (3.1.49).
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Next consider (3.1.33). Because of (3.1.40) and (3.1.35) we ha_

o' n. = 0 on S and therefore again the second integral in (3.1.48) vanishes,
ij ]

establishing (3 .'i.50). By precisely the same method average rate theorems

0 O

6f virtual work may be established. If ¢ij and/or c_ij are replaced by strain

rates and/or stress rates, (3.1.49) and/or (3.1.50) hold with corresponding

rate replacement.

For example: if

v(S,t)= _o (t)x
I z] ]

(3.1.51)

then

V m°ij _ij dV= oij
(t) _ (t) v=_ (t) ao (t)v

i] l] I]
(3.1.52)
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APPENDIX

Divergence Theorem

The usual divergence theorem for a vector F. asserts that
i

F.. dV = / F. n. dS

V l,z S i i

The extended divergence theorem asserts that

Fi, j dV = / F. n. dS
S

(2)

Note that (2) is more general than (I), since (i) follows from (2) by contraction

(summation over equal values of i and j).

A more general result than (2) is

/vaij,kdW= / aij nk dS (3)
S

with obvious further generalizations.

Theorem of Virtual Work

This extremely important theorem may be summarized as follows. Let

(_..(_x)be a stress field in a body of volume V and bounding surface S, which
i]

satisfies static equilibrium everywhere, i.e.

a +F.=0
ij,j i
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Let ¢ij _ be a compatible strain system defined throughout the

same body , but completely unrelated to the previously considered stresses.

The theorem of virtual work asserts that

/_ij ¢ijdV= /Tiu'dS + /Fiui dV

V S V

where

and u.
1

T,=a n.

are the displacements from which the e. are derived.
l]

It cannot be too strongly emphasized that the theorem of virtual

work has no physical meaning in its present form. It becomes physically

meaningful when it is considered in the special case of stresses which are

related to the strains such as in elasticity. In that latter case it becomes

Clapeyron's theorem which states that in an elastic body the internal work

(strain energy) equals the external work.

The theorem of virtual work in its above form remains valid for a

multiphase body if the tractions _ij nj and the displacements u i are

continuous across phase interfaces.
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3.2 THE ELASTICITY PROBLEM FOR HOMOGENEOUS AND HETEROGENEOUS

BODIES

3.2.1 Homogeneous and Continuously Nonhomogeneous Bodies

We consider in this chapter the formulation of classical elasticity

problems for homogeneous and heterogeneous bodies.

Let u. __) be the small displacement field in an elastic body. The
1

small strain tensor ¢ (x) is defined by
ij

1

tj 2 (ut,j + u ) (3 2 1)],1

The symmetric stress tensor o. (x) is related to the strain tensor
i]

by Hooke's law which for the general anisotropic case has the form

_j = Cijkl %1
(3.2.2)

The components of the fourth rank tensor Cijkl

They obey the symmetry relations

Cijkl = Cjikl = Cijlk = Cklij

are known as the elastic moduli.

(3.2.3)

As a consequence of (3.2.3) there remain at most 21 different Cijkl.

The inversion of (3.2.2) is written in the form

=S O
ij ijkl kl

(3.2.4)
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where Sijkl are known as the elastic compliances. The Sijkl

symmetry relations of type (3.2.3), i.e.

also obey

Stjkl =Sjikl = Sijlk = Sklij (3.2.5)

The relationship between Cijkl

in the form

Sijrs C rskl =Iijkl

and Sijkl may be written compactly

(3.2.6)

1

Iijkl- 2 (Sik 6jl + 5il6jk) (3.2.7)

where 6ij is the Kronecker delta and Iijkl is a symmetric fourth rank unit tensor.

It should be noted that for an isotropic elastic body the Cijkl tensor

assumes the form

Cijkl = 16ij 6kl +2G Iijkl

where t is the usual Iam_ modulus and G is the shear modulus.

The elastic moduli Cijkl and the compliances Sijkl are further

restricted by positive definiteness requirements of the elastic energy density.

This energy density is defined by

1
W = -- o _ , (3.2.8)

2 ij Ij

Substitution of (3.2.2) into (3.2.8) yields the strain energy density

W e 1 e 0
= T Cijkl eij ekl

(3.2.9)



42

Substitution of (3.2.4) into (3.2.6) yields the stress energy density

1 (*)
W G _

2 Sijkl (_ ij akl _ 0 (3.2.10)

Equality to zero in (3.2.9-10) occurs if, and only if, e.. = 0 or _.. = O,
t] 1]

re s pect ire 1y.

In the static case the stresses obey the equilibrium equations

o.. + F. = 0 (3.2.11)
1j,j 1

where F. are the body forces per unit volume. Substitution of (3.Z. I) into
1

(3.2.2) and the result into (3.2.4) yields a set of differential equations for

dis plaeement s

(Cijkl Uk, 1 ),j + F.t = 0 (3.2.12)

where the symmetry relations (3.1.3) have been exploited. It has been

assumed in (3.2.12) that the Cijklare continuously space variable. In the

important special case when Cijkl are constant, the elastic body is called

homogeneous. In that event (3.2.12) simplifies to

= 0 (3.2 13)
Cijkl Uk,lj + Fi

For an isotropic elastic body (3.2.13) reduces to the well known

Navier equations

(k+O) u + Gu +£ =0
I ,ji i,jj t

(.) Strictly speaking (3.2.9-10) define positive semi-definite quadratic forms.

For reasons of compactness the expression positive definite will be used

throughout this work.
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The traction vector components T. at a surface point where the normal
i

has the components n. with respect to some cartesian coordinate system,
1

are given by

T = o.. n. (3.2.14)
: U ]

The tractions (3.2.14) are easily expressed in terms of displacement

gradients by substitution of (3.?..i - 2) into (3.2.14). This yields

T i = Oijkl Uk, 1 nj (3.2.15)

where the symmetry (3.2.3) has been exploited.

In a typical boundary value problem the boundary conditions are

o
u. = u . on S (3.?.16)
1 i u

T i = Cijkl Uk, 1 nj = T °:. on _T (3.2.17)

That is to say, displacements are prescribed on the part Su of the boundary and

tractions on the part ST of the boundary.

If the system of differential equations (3.2.12) has a solution which

satisfies (3.2.16-17) then this solution is unique, apart from a possible rigid

body motion (in the event that tractions are prescribed over the entire boundary).

For proof see e.g. [3. i_ . In any event, the strains and consequently the

stresses are always unique since a rigid body motion produces no strains.
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3.2.2 Exact Solutions for Homogeneous Bodies of Arbitrary Shape

We shall now consider two cases in which the elasticity problem can be

solved for bodies of arbitrary shape. Let the body be homogeneous and let

The differential equations (3.2.13) then assumethe body forces vanish.

the form

Cijkl Uk,lj = 0 (3.z.18)

In the first case linear boundary displacements are applied to the

entire surface S, i.e.

O

U. (S) " ¢.. x. (3.2.19)
i i] ]

0
where e..

i] are symmetric constants and xj
are the surface coordinates.

In that event the displacement field inside the body is given by

O

u i (x) = eij x.] (3.2.20)

The proof of this statement is immediate: The displacements (3.2.,20) obviously

satisfy (3.2.19) . Since they are linear in x. and all displacement deriva-
]

tives in (3.2.18) are of second order they also satisfy (3.2.18), trivially.

By the previously mentioned uniqueness theorem it follows that (3.2.20) is

the unique solution.

Insertion of (3.2.20) into (3.2.1) shows that the strains in the body

are given by

0

¢ij (x) = ¢ij (3.2.21)
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and they are thus constant. Insertion of (3.2.21) into (3.2.2) shows that

the stresses are also constant and are given by

o

aij = CiJkl _ ij
(3.2.22)

Next we consider a body which has tractions prescribed over its entire

surface, in the form

Ti (S) = o°ij nj (3.2.23)

O
where o.. are symmetric constants and n, are the components of the outward

l] ]

normal to the surface. To find a solution first define the constants aij by

o (3.2.24)
_ij = Sijkl _kl

The solution is then

u. (x) = a,.x, (3.2.25)
l i] ]

To prove this statement it is again noted that,by its structure,(3.2.25)

trivially satisfies (3.2.18). Insertion of (3.2.25) into (3.2.15) shows in

view of (3.2.24), (3.1.6) and (3.2.7), that the boundary conditions (3.2.23)

are satisfied. By the uniqueness theorem (3.2.25) is the displacement, apart

from rigid body motion. Itfollows that the strains are constant and are given

by (3.2.24) and the stresses are also constant and are given by

O
o (x) = o,, (3.2.26)

iJ U

Since either one of the boundary conditions (3.2.19) or (3.2.23) leads to

homogeneous (constant) fields of strain and stress in homogeneous elastic
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bodies of arbitrary shape, such boundary conditions will from now on be

called homogeneous boundary conditions. (*)

It is to be carefully noted that the elementary solutions derived do

not hold for bodies with variable elastic moduli.

The preceding solutions illuminate the significance of homogeneous

boundary conditions. It was seen that when such boundary conditions are

applied to homogeneous elastic bodies the fields of strain and stress through-

out are uniform. Thus important cases such as isotropic (hydrostatic) stress

and strain, uniaxial stress and pure shearing and straining are all covered

as special caseS.

When such boundary conditions are applied to the surface of a hetero-

geneous body the fields inside are no longer uniform. However, the surface

is deformed or loaded as/if the body were homogeneous with homogeneous

strain and stress inside. Thus these boundary conditions express mathe-

matically the fundamental tests of material behavior such as simple extension,

biaxial stressing, pure shearing and hydrostatic stress which are performed

o
in the laboratory on heterogeneous specimens. The forms of the ¢.. and

U

o
o matrices for such cases are given below
ij

Is otropic D_formation

_- o
:e 0 0

" 07 i 0 I_:e _ = 0 _ 0 i

I ij_: ! oj'- " LO 0 ¢

(*) This should not be confused with the meaning of homogeneous boundary

conditions in theory of differential equations.
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Isotropic (Hydrostatic) Stress

0ro'I o o

Lo o

Pure Shear Deformation in x I x2 Plane

i o 0_

0 e 12

o 0 0
12

0 0

Pure Shear Stress in x I x2 Plane

o0!0 _12o 0 0
°12

Io o o]

Uniaxial Stress in x 1

!°ti

Direct ion

li 0 01

11

0 0

0 0
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We shall now discuss typical elasticity problems for heterogeneous

bodies. For simplicity only two phase bodies shall be considered, extension

to multiphase bodies being a straightforward matter.

The body of volume V and surface S is now composed of two phases,

one occupying the domain R1 with volume V 1 , the other occupying the

domain R2 with volume V2. The phases are assumed to be homogeneous

with elastic moduli C(1) and C(2) , respectively. The interface between
tjkl ijkl

the two phases is denoted S12. The elasticity problem is then formulated

as follows

c (1) u (1)
ijkl k, lj

c(2) u(2)
ijkl k,lj

+ F(1) = 0 in R1
1

+ F(2)I"= 0 inR2

(3.2.2 7)

where superscripts define fields in the respective phases.

The boundary conditions (3.2.16 - 17) remain unchanged with the added

(I) u(2)provision that they apply to both displacement fields u. and . on boundary
I I

parts composed of respective phase materials. There are added the interface

condit ions

u (i) (z) 3• =U !

l i I on S

r(1)=r(Zi) f lZt ' (b)

(a)
(3.z.z 8)

These interface conditions assume perfect bonding. The first assures that

there is no separation between the phase materials and the second assures

equilibrium at a bonded interface.
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In the event of interface separation, voids appear which may be regarded

as a third phase. The continuity conditions are then replaced by zero traction

conditions on that part of S12 which is separated.

It is of interest to cons lder two extreme cases of two phase bodies.

In the first case one phase, say 2, is considered as perfectly rigid. In

that event (3.2.28) is replaced by

u (1) = 0 on (3.2 29)
i S12

In the second case phase 2 is composed of voids.

T(1) = 0 on S
1 12

In that event

(3.2.30)

Problems for two phase bodies are by an order of magnitude more

difficultthan problems for homogeneous bodies. In particular, the simple

results given above for homogeneous bodies under homogeneous boundary

conditions are not valid any more because of the appearance of the interface

conditions (3.2.28).

It is important to note that the uniqueness theorem is easily extended

to two phase and multiphase bodies. It now asserts that if fields can be

found which satisfy (3.2.27), (3.2.28) and (3.2.16-17) there is no other

solution which satisfies the same equations (apartfrom arbitrary rigid body

motions for 8 = 0).
u
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3.3 EFFECTIVE STRESS-STRAIN RELATIONS OF GENERAL COMPOSITES

3.3. I Heterogeneous Bodies with Homogeneous Boundary Conditions

In the present chapter the concept of effective elastic moduli (EEM)

will be defined and discussed for general SH composite elastic materials

without particular reference to the more special case of fibrous or fiber

reinforced materials. The present paragraph is concerned with some

general theorems which hold for any elastic body, homogeneous or

nonhomogene ous.

Let a composite body with no body forces be subjected to the

homogeneous boundary condit ion

O

u,1(s) : _ ijxj (3.3.i)

The formulation of the mathematical problem for determination of the

displacements u. at every point has been given in chapter 3.2. It is here
1

o
desired to establish a relationship between field averages and the ¢

ij

O
The ¢

tj
o

there occurs only one non-vanishing ¢
ij

matrix can be separated into 6 matrices in each of which

strain. Thus

o o o -o o o [o o o _!¢ii

i _ ¢22 0 i + !0 0 0 iLJJ

!0_ 0 0 _., _iO 0 0 '. ,_.0 0 _;33j

+

ro o _ I-o o o -¢ 12
O !

iel2o 0 0',,+ }0 0 ¢23!
' _ Io o
0 0 01 _ ¢23 0 i

F0
+ 0

o
e

13

o ;

13i
0 0 {

I

0 0J
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To these correspond six boundary displacement vectors which for conven-

ience are also written in matrix form

am

e ° i

ii xf

u°i!: 0 + x2!
I

0 _ i
i

_ 0

to
e 22

!o
I

0

+ 0 '

J

 °33x 

eo12 21

+ e 12 Xli

0
i

+

+

v-

0

o x3e23

, 3

+

I

0

¢ 13 x3

j 0

e 13 Xl

(3.3.2)

Because of the superposition principle of the linear theory of elasticity the

elastic field which is produced by (3.3.1) is equal to the sum of the six

fields which are produced by the application of each of (3.3.2), separately,

on the boundary. Consider for example the application of the firstdisplace-

ment on the right side of (3.3.2).

displacement field be denoted

o u(iZ)
is by linearity ell i (x)

O
Suppose that e = 1 and let the resulting

11

o ¢ 1 the fieldu(II).(_x) . Then when ¢11l

Similar considerations for each of the

displacements on the right side of (3.3.2) and superposition show that the

displacement field in the body due to (3.3.1) on the boundary can be

written in the form.

o (kl)(x)u (x)=, u
i - kl i

(3.3.3)
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Here kl is summed.

given by

By (3.2.1) and (3.3.3) the strain at any point is

o (kl)
Ctj (x) = Ckl ¢ij (_-) (3.3.4)

where

(kl) (x) - l (u(.k.l)+ u (_l)) (3 3 5)
e ij - 2 U j,i " "

Finally, the stress at any point is given in view of (3.3.4) and (3.2.2) by

O

oij (x)= Ckl Cijmn (x)_ e(kl)mn_ (3.3.6)

where the C.. are the space dependent elastic moduli of the heterogeneous
l]mn

body. In the case of a two phase body they assume only the two values

C (I) and C (2)
l]mn 1]mn

Now let (3.3.6) be volume averaged. The result is written in the form

- * O

= C ¢ (3.3.7)
ij ijkl kl

where

. _ i /" (kl)
Cijkl V ._ Cijmn (-x) e mn (_x) dV (3.3.8)

V

It is thus seen that a field quantity at any point and its average are linearly

O
related to _ ,..

i]
It should be borne in mind that this property is solely a

consequence of the linearity of the governing equations.
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In view of the average strain theorem (3.1.17 - 18), eqn. (3.3.7)

can be written in the important form.

I _ * -- ]qij = C'ijkl Ckl
(3.3.9)

Since qij and ¢ij are tensors of second rank it follows by the quotient law

of tensor analysis (see e.g. [3.2] ) that Cijkl is a tensor of fourth rank.

If a composite elastic body is subjected to the homogeneous traction

boundary conditions

T. (S) = qo n (3.3.10)
ij J

then itcan be shown by arguments completely analogous to the ones given

0

above that all field quantities now are linearlyrelated to o
ij

. In

particular the average strains can be written as

- * 0

= S o (3.3.11)
1] ijkl kl

In view of the average stress theorem (3.1.33 -35), equation (3.3.11) can be re-

written in the important form

l

¢ ij = S ijkl °kl

It follows again by the quotient law that S
ijkl

The average theorems of virtual work which have been derived in

(3.3.12)

is a tensor of fourth rank.

chapter 3.1 are now recalled. Obviously these theorems apply as a special

case to the elastic energy of a composite body subjected to the homogeneous

boundary conditions (3.3.1) or (3.3. lO). The elastic energy U is defined by
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21fu- cij (x)  ii. (x)dV
V

(3.3.13)

When (3.3.1) is applied to the boundary we have

-- o l * 0 0
U- _ e..V- C e ¢

2 ij _] 2 ijkl ij kl
V (3.3.14)

where the last equality follows from (3.3.7).

When (3.3.10) is applied to the boundary we have

i o - i * o o

U- 2 o ij ¢ij V = T s ijkl c_ ij Crkl V
(3.3. lS)

where the last equality follows from (3.3,11), Expressions (3.3.14) and

(3.3.15) may be called the str_aip and. stress energies, respectively. The
t

notation used will be

[.... _ 1 * o o 1 * _ _ i
U = --C _ ¢ V=--C ¢ ¢ V

2 ijkl ij kl 2 ijkl iJ kl
(a)

(3.3.16)

i * 0 uO 1 * - -
U - 2 Sijkl _ij kl V = T Sijkl °ij °klV (b)

It is easily shown that both C ijkl and S ijkl obey the symmetry

relations of elastic moduli, (3.2.3). Symmetry with respect to i,j and k,1

interchange follows from (3.3.7) and (3.3.11) by stress and strain symmetry.

To show symmetry with respect to ij, kl interchange we proceed by writing

(3.3.9) in the form

a (x_x__) (x_..) = C ¢ (3.3.17)
ij = Cijkl ekl ijkl kl
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where Cijkl (x) denote the space variable (piecewise constant) elastic

moduli of the heterogeneous body• It follows from (3.3.17) that

* * - = =0 (3.3.18)
(Cijkl - C klij ) _kl (Cijkl - Cklij) Ckl

where the right side of (3.3.18)vanishes because of the last equality in

(3.2.3).

is an arbitrary tensor it follows that each coefficient of ¢

* *

Therefore C ijkl = C klij "

In summary, then

C ijkl C j ikl = C ijlk = C klij

kl

Therefore the left side of (3.3.18.) also vanishes and since Ckl

must vanish.

Sijkl = Sjikl = S ijlk =S klij

(3.3.19)

(3.3. ZO)

which leads to at most 21 independent C or S
ijkl ijkl

• Note that (3.3.19 - 20)

are entirely analogous to the classical relations (3.2.3) and (3.2.5).

It should be carefully noted that all of the results established so

far in this chapter are rigorous results for any heterogeneous elastic body

which is subjected to homogeneous boundary conditions. They apply to

bodies containing one foreign inclusion as well as to bodies containing

an immense number of inclusions.
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3.3.2 Statistically Homogeneous Bodies

We now consider the special class of heterogeneous bodies which are

statistically homogeneous. The concept of the statistically homogeneous body

has been discussed in chapter 2.2. We shall now need another concept which

is that of the statistically homogeneous field. The precise definition of the

SH field must be given in probabilistic terms as was done with the SH body.

We shall here discuss statistical field homogeneity in elementary fashion.

For detailed statistical discussion the reader is referred to _2 '!

Consider a volume element AV which is a small part of an heterogeneous

body yet large enough to represent its structure. In a composite which consists

of particles and matrLx such an element must contain many particles. Ina FRM

we may choose a cylindrical element whose generators are parallel to the

cylindrical compos ite s pecimen and whose cross sect ion conta ins many fibers.

We shall call such a volume element a representative volume element, hence-

forward abbreviated RVE. If the field is statistically homogeneous then the

volume average taken over RVE approaches the whole body average, wherever

the RVE may be located. Considering for example a SH stress field °ij (x_ )

we have

oii (x) dV- aii

V AV

x ) dV (3.3.21)

Suppose for illustrative purposes that the volume element is of circular

cylindrical shape and its centroid is located at the point x. The cylinder is now
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expanded radially and the volume average is continuously taken. The average

starts out with the value o., (x ) at the point x and converges asymptotically
i]

to the body average q... A schematic plot of average stress as function of AV
l]

is shown in fig. 3.2.1. Also fig. 3.2.2 shows a schematic variation of

SH o,. (x) along a line taken through the composite.
i]

shows the variation of statistically non-hom0qeneous

In contrast fig. 3.9.3

o along a line taken
l]

through the composite.

Similar considerations apply to surface averages over large surface

elements AA.

The statistical definition of SH involves ensemble averages. Such

averages have been defined in chap. 2.2 in a geometrical context and there

is no difficulty to give similar definitions in the present case. Thus <oij > ,

the ensemble average of oij #is defined as the average of aij at the same

identical point taken over all the infinity of members of an ensemble of heter-

ogeneous specimens. In general ( °ij > is a function of position, but if _ ij

is SH this average is space independent and by the ergodic hypothesis equal

to the body average or RVE average.

SH in the strict sense requires that the infinite set of n point averages

be independent of the position of the point system within the ensemble members.

For example

°ij (xl ) °kl(x-2) >: Rijkl(x-2-xl)

( qij
) °kl _Z) °mn ( x? ) >

x 2 1 3 1
=Rijklmn (_ -x_ , x -x_ )

For detailed discussion the reader is referred to [2.21
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It is to be noted that in a composite of periodic geometry the RVE

is s imply the repeating element. Thus in the FRM shown in fig. 2.1.5 the

RVE is a composite cylinder of square section containing a symmetrically

located circular fiber.

The question which now arises is under what circumstances are SH

stress and strain fields produced in SH bodies? The answer to this

question is contained in what shall be called the fundamental postulate

of the theory of elasticity of heterogeneous media:

The stress and strain fields in a very large SH heterogeneous body,

subjected to homogeneous boundary conditions, are SH, except in a narrow

boundary layer near the external surface.

While the validity of this postulate is not in doubt, a general proof

does not seem to be available. By way of some explanation it should be

noted that homogeneity is certainly a special, albeit trivial, case of

statistical homogeneity. Now it has been shown in par. 3.2.2 that the

fields of stress and strain in homogeneous elastic bodies are homogeneous

if the boundary conditions are homogeneous. Thus the present postulate

extrapolates this rather simple state of affairs to the much more complicated

case of heterogeneous SH bodies. It is clear that near the surface there

must be a boundary layer where SH is not fulfilled. For a SH field looks roughly

as the one shown in fig. 3.2.2 and the homogeneous boundary conditions (3.3.1)

anJ (3.3.10) impose a constraint which does not permit the random fluctuation
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to fully develop near the surface. The surface effect , however, diminishes

very rapidly at points removed from the surface.

It is instructive to note that if the strain field is SH the displacement

field is statistically nonhomogeneous. This is certainly to be expected,

for if the strain field in a homogeneous body is uniform,
O

e , say, then
ij

the displacement field is linear and has the form

O

u (x) = e x
i i] ]

It may be shown that for a SH strain field with average e..
i]

the ensemble

average (ui> of the displacement field is given by

(x)= ei jx-- ]

which is thus space variable. Therefore u. (x) is not SH.
1

We now return to the results (3.3.9) and (3.3.12) which give the

relations between stress and strain averages in heterogeneous bodies which

are subjected to homogeneous boundary conditions. Evidently, the results

remain valid for the present case of large SH bodies. The new significance

of the results is inthat,the coefficients C ijkl and S ijk[
in (3.3.9) and

(3.3.12) are now related. One matrix is the inverse of the other, which is

mathematically expressed by

Cijmn Smnkl =lijkl

i

Iijkl - 2 (Sik 8jl + 8il6jk )

(a)

(b)

(3.3.22)
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A general proof of this assertion does not seem to be available but its validity

can hardly be in doubt. For in any large SH body in which the fields of stress

and strain are statistically homogeneous, the imposition of average strains

¢ij leads to average stresses aij via (3.3.9). It is quite clearthat imposi-

tion of the same _ij first, will lead to the same eij which were imposed

initially. This implies that (3.3.9) can be substituted into the right side of

(3.3.12) to yield

-- 9¢ 9: _

_- = S C c (3.3.23)
ij ijmn mnkl kl

where ¢..and
1j Ckl are by hypothesis the same average strain system.

Recalling Iijkl as defined by (3.3.22b) we can write

m

ij = Iijkl _kl (3.3.24)

Subtraction of (3.3.24) from (3.3.23) gives

* 9:

(S ijmn C mnkl - Iijkl) Ckl = 0 (3.3.25)

Since ¢
kl is an arbitrary tensor the parenthesis in (3.3.25) must vanish which

leads to the desired reciprocity relation (3.3.22a) ..

Note that such reciprocity is by no means valid for an arbitrary hetero-

geneous body such as one containing only two or three inclusions or fibers.

9:

On the basis of the preceding discussion the C are defined as the
ijkl

W

effective elastic moduli (EEM) of the SH heterogeneous body while the S
ijkl

are defined as the effective elastic compliances (EEC). Equations (3.3.9)
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and (3.3.12) are called the effective stress-strain relations of the hetero-

geneous body. Because of the relations (3.3.20) a SH elastic body has at

most 2 1 independent EEM or EEC.

The reciprocity of the C ilkl
and S

iJkl
tensors means that it does

not matter whether homogeneous displacement or traction boundary conditions

are used in effective elastic properties determination. So the choice can

be made on the basis of convenience alone.

Moreover, it is sometimes necessary to use mixed homogeneous

boundary conditions, i.e. (3.3.1) ona part S of S and (3.3.10) on a pa_
U

ST of S. This is permissible if

O

or dually ¢ in (3.3. i) on S
ij u

o in (3.3.10) on S To ij

is given by (3.3.11).

is given by (3.3.7)

Furthermore, it is sometimes necessary to prescribe one or two

traction components of form (3.3.10) in one or two directions and two or one

displacement components of form (3.3. I) in the remaining direction(s), over

the entire surface. This is again permissible under similar conditions, i.e.

o and o
if the o ij ¢ iJ in the boundary conditions are related by (3.3.9)

or (3.3.11).

It is intuitively clear (again there is no proof available) that the

elastic energy stored within a RVE of a SH heterogeneous body, subjected to

homogeneous boundary conditions, does not depend upon the RVE location

within the body. If the RVE is arbitrarily defined as unit volume then it

follows from (3.3.16) and the preceding that the strain energy W stored in

a RVE is given by
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I _rS = 1 * - - I - - !

1

"-_ C ijkl ¢ij Ckl = 2"- oij ¢ij l (3.3.26)

and it follows also that the stress energy within a RVE is given by

[_0 "i * - - 1 J
....

2 S ijkl aij akl 2 ij ij
(3.3.27)

The expressions (3.3.26 -27) may thus be called the strain and stress

energy densities, respectively.

The procedure of computation of EEM is now outlined. A large hetero-

geneous body of some convenient shape is subjected to homogeneous boundary

conditions of type (3.3.1). The average strains are then known and the

average stresses have to be computed. To do this the elasticity problem

of the heterogeneous body, as described in par. 3.2.3, has to be solved in

detail, the stresses have to be found throughout the body and have then

to be averaged. To isolate different EEM, boundary displacements of type

(3.3.2) have to be applied separately. Thus, the first of these is

O O O O

u (S) = e x 1 u (S) = u3 (S) = 0 (3.3.28)z II ' 2

- O

In that case the only nonvanishing average strain is ¢11 = s ii according

to (3.1.18). If the average stresses in the body subjected to (3.3.28) are

known, then we have because of (3.3.7)

- * O
c..=C ¢
l] ij ii ii

which defines the EEM C
iiii' C 2211' C 3311, C 1211, C 2311' C 31111
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By application of each of the displacements in the right side of (3.3.2),

separately, all EEM are given similarly as ratios between an average stress

and an average strain.

The procedure for computation of EEC is precisely the same, via

homogeneous traction boundary conditions of type (3.3. i0).

It should now be clear that the actual computation of EEM or EEC

is an extremely difficult problem, since it is necessary to solve in detail

an elasticity problem for a heterogeneous body. Because of the interface

conditions (3.2.28) the solution depends upon all the details of the phase

geometry and therefore also the EEM and EEC depend upon the entire phase

geometry and of course also upon the phase elastic modull. The dependence

upon the entire phase geometry must be strongly emphasized for it has been

frequently assumed in the literature that such simple geometrical information

as volume fractions is sufficient for computation of EEM. This is, of course,

in general incorrect and is true only in some very limited and special cases.

It should also be realized that if the phase geometry is not known in

all detail there is in general not sufficient information available to solve the

boundary value problem and thus there is also insufficient information for com-

putation of the EEM. This tmmedlately leads to the conclusion that actual com-

putation of EEM must be limited to simple geometries.

3.3.3 Effective Elastic Properties in Terms of Phase Averages.

Consider the effective stress-strain relation (3.3.9) for a two phase

SH body, subjected to (3.3.1). Then
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- = o =- (i) + ¢ (2) v2 (a)¢ij ¢ij ¢ij Vl ij

_ij = _il I) Vl + Oil2) v2 (b)

(3.3.29)

where Vl andv 2
- (i)

are the phase volume fractions and quantities as ¢..
x]

are averages over phase volumes, thus

etc.

- (1)_ 1 f (1) (x) dV etc
¢ij V 1 eij --

JJ.

V 1

The phases are elastic homogeneous and anisotropic and their stress-strain

relations are

() (I) (I)
o I'.. = C e (a)

I] ijkl kl

(_(2) = C(2) _(2) (b)
i] ijkl kl

(3.3.3o)

Equations (3.3.30) may be averaged over the respective phase volumes and

then become

_ij(1) = C(1)ijkl -s (1)kl (a)

(3.3.31)

(2) = C(2) -(2)
ij ijkl ¢ kl (b)
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Now (3.3.9), (3.3.29) and (3.3.31) are five equations, from which we

choose to eliminate the four quantities 5.., _ (1).., _ (2).. and ;(1)..
i] i] i] i]

The result is

* o = C (i) o
C ijkl ¢ kl ijkl ¢ kl + (C(2) (i) ,) - (2) v2 (3.3 32)ijkl- C ij_, ¢ kl

Evidently _ (2).. could have been eliminated instead of _..(1)
l] i]

The result

for this case can be written down at sight by interchange of 1 with 2 and

2 with 1 in (3.3.32).

An explicit result for C ijkl can be obtained in the following fashion:

- (2)
Because of the linearity of the problem the average ¢ must be

ij

o
linearly related to the ¢ .. in the boundary conditions. (A similar argument

1]

has been given in detail in par. 3.3.!). Write

-(2) =A(2) o (3 3 33)
¢ ij ijkl ¢ kl " "

. (2)
where A ijkl

(3.3.33) into (3.3.32) we obtain

IC* - [C(1) + (C(2)ijkl ijkl ijmn

is a strain average influence tensor for phase 2. Introducing

0

Since e kl

_]

- c (i) ) A (2) fI_ ° =0 (3.3.34)
ijmn mnkl v kl

are arbitrary strains, the parenthesis in (3.3.34) must vanish.

Thus

I . (i) (c(2)Cijkl = C ijkl + ijmn
-C (i) ) A(2) v2 1 (3.3 35)

ijmn mnkl ]
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The whole preceding development may be easily repeated for homogeneous

traction boundary conditions (3.3.10). This leads to

, o = (I) o (2) (i) -(2) v2 (3 3 36)S ijkl (7 kl S ijkl °kl + (S ijkl - S ijkl ) o kl " "

or explicitly to

S ijkl = S + (S (3 3.37)ijkl ijmn nkl v2 "
I

In (3.3 37) B (2) is the stress average influence tensor for phase 2• mnkl '

which enters into the linear relationship

-(2) = B(2) (71(7 ij ijkl 1 (3.3.38)

The proof of (3.3.37-38) is left as an exercise to the reader. Note that

insertion of (3.3.35) and (3.3.39) into (3.3.22 provides a relation between

A(2) and B (2)
ijkl ijkl
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3.4 EFFECTIVESTRESS-STRAINREIATIONSOFFIBERREINFORCEDMATERIALS

3.4.1 Elastic Symmetry

It has been seen in the previous chapter that a SH heterogeneous body

has at most 21 independent EEM in the most general anisotropic case. This

situation is entirely analogous to the one encountered in the case of the

general anisotropic homogeneous elastic body, par. 3.2.1. Fortunately,

various symmetry considerations reduce the number of independent EEM and

thus the effective stress-strain relations (3.3.9) or (3.3.12) can be

greatly simplified.

Various kinds of geometrical symmetry have been briefly discussed in

chapter 2.1. Here, we shall be concerned with elastic symmetry, i.e.

symmetry considerations which are specifically tied to linear elastic stress -

strain relations. It is to be noted that other kinds of materials constitutive

relations would give rise to different symmetry properties. Thus elastic

symmetry is a certain aspect of the more general subject of material symmetry.

The elastic moduli Cijkl in the microscopic stress-strain law (3.2.2),

W

as well as the effective elastic moduli C in the macroscopic stress -
ijkl

strain law (3.3.9) are the components of fourth rank tensors. Their values

are therefore defined in reference to a coordinate system. If the coordinate

system is rotated the elastic moduli assume different values with respect to

the new coordinate system, the new values being connected to the old values

by the laws of tensor transformation. Elastic symmetry is expressed by the
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property that under certain coordinate changes the elastic moduli remain

unchanged. Basic coordinate changes are (a) Reflection in a plane, (b)

Rotation about an axis (c) Rotation about an axis combined with reflection

in a plane perpendicular to the axis. ( [3.3_- . , p. 152). If reflection in a

plane leaves the stress-strain law unchanged then the plane is called a

plane of elastiq symmetry. If rotation of a coordinate direction about an

axis leaves elastic properties unchanged then the initial and final coordinate

directions, which are perpendicular to the axis, are equivalent elastic

directions. If all rotations about a fixed axis do not change elastic properties,

the axis is one of rotational elastic symmetry, in short an axis of symmetry.

In a heterogeneous body the symmetry may be microscopic, i.e. for

the elastic properties at a point, or the symmetry may be macroscopic in

terms of effective elastic moduli when the point is replaced by a RVE. For

example, in a fibrous material any transverse x 2 , x 3 plane is a plane of

microscopic as well as of macroscopic elastic symmetry (if it is also a plane

of elastic symmetry for the phase materials). If the fibers are randomly placed

in the cross section, then the x I axis may in many cases be assumed to be

an axis of macroscopic rotational Symmetry but it is not in general an axis

of microscopic rotationa I symmetry.

Reductions of the stress-strain law (3.2.2) for various kinds of elastic

symmetry may be found in the literature in books such as Love [3.3] ,

Sokolnikoff [3.2] and Lekhnitsk[ [3.4] Since the macroscopic stress-strain

law (3.3.9) is the complete mathematical analogue of (3.2.2) it is evident
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that symmetry reductions for the latter are mathematically identical to reduc-

tions for the former. Therefore there is no need to perform such reductions

here in detail.

Before proceeding further a comment about the concept of independent

elastic moduli is in order: The reduction of the number of ipdependent moduli

from 21 to any lower number is based upon information which is available

to us about the elastic material. At present the only information to be used

is that of elastic symmetry. We shall see later on that information about

the structure of the material can also be used to reduce the n_imber of

independent moduli.

3.4.20rthotropic Materials

The most complicated case to be considered in the present work is the

macroscopically orthotropic body. The orthotropic elastic body is one which

has three mutually perpendicular planes of elastic symmetry. An example for

such a material is provided by the rectangular array of identical circular

fibers shown in fig. 2.1.4. It is clear that the coordinate planes are planes

of geometrical symmetry, however, this in itself is not sufficient for we are

concerned here with elastic symmetry.

In order to ensure macroscopic elastic orthotropy the phases elastic

behaviour must obey certain conditions, which are of two kinds. The first

kind involves elastic symmetry of the phase materials and the second involves

the direction of the phase elastic axes with respect to fixed composite body

axes x I, x 2 , x 3. It would be tedious and superfluous to list all the
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conditions under which macroscopic orthotropy is fulfilled for a geometrically

orthotropic body. Suffice it here to give some important examples : The

geometrically orthotropic FM or uniaxially FRM is elastically orthotropic if

the phase materials elastic symmetry is not less than orthotropic, with fixed

elastic axes parallel to the x I , x 2 , x 3 axes. On the other hand macroscopic

elastic orfhotropy is also fulfilled if in the fibers the x I axes remain fixed,

while the other two axes are randomly oriented in the x 2 , x 3 plane.

The most important case is isotropic fibers and matrix which is of

course included as a special case in both examples. In that case there is

no directional effect of phase elastic axes.

The orthotroptc form of the effective stress-strain laws (3.3.9) and

(3.3.12) involve only nine independent constants. Eqns. (3.3.9) assume

the form

-- * -- W -- 9¢ --

°II=CII ¢ii +C 12 ¢22 +C13 el3 (a)

-- * -- _¢ -- 9¢ --

_22 =C12 ¢11 +C22 _22 +C23 e33

W -- W -- W --

_33=C13 ell +C23 e22 +C33 ¢33

- W --

q12 =2 C44 el2

a23 =2 C55 _23

c_31 = 2 C 66 ¢31

(b) (3.4.1)

(c)

(a)

(b) (3.4.2)

(c)
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The two subscript notations for the effective elastic moduli in (3.4.1 - 2)

is connected to the four subscript notation of (3.3.9) by

W W W 9¢ W 9:

Cll =Cllll, C22 =C2222, C33 =C3333 (a)

* W 9¢ 9¢ W W

C12 =CI122, C23 =C2233, C31 =C3311 (b) (3.4.3)

* W W W W W

044 = C232=C1212' C55 3' C66 =C3131 (c)

It is seen that (3.4.2) are shear moduli for shears taking place in

the coordinate planes. At times the following notation will be used for

these

W _% W _ W W

=G23C44 =G12, C55 , C66 _'G31 (3.4.4)

The inverse of (3.4.1 - 2), i.e. the form which corresponds to (3.3.12)

is written as

-- W -- * -- W --

_'II = S ii (_ii + S 12 _22 +S 13 o33

-- 9¢ -- 9¢ -- _¢ _

¢22 =S 12 _11 +$22 022 +$23 _33

-- W -- 9¢ _ W --

¢33 = S 13 _iI + $23 _22 + $33 _33

(a)

(b) (3.4.5)

(c)
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c12 =2 $44 °12

e23 =2 $55 023

(a)

(b) (3.4.6)

¢31 =2 $66 _31 (c)

where S ij in (3.4.5 - 6) are connected to S ijkl

of relations as (3.4.3).

TheS.. in (3.4.5) are given in terms of C,.
t] 11

algebraic expressions which may be found in _3.4]

in (3.3.12) by the same kind

in (3.4.1) by complicated

The relation between

the shearmoduli in (3.4.2) and the shear compliances in (3.4.6) is,

however, rather simple and is obviously

* 1 * 1 * 1
S - S - S -
44 * 55 * 66 *

4C 4C 40
44 55 66

(3.4.7)

It is furthermore customary to write the S
tj

in (3.4.5) in the form

* 1 * 1 *
S - S - S

11 * 22 * 33
E E

1 2

1

E
3

(3.4.8)

S -
12

9¢ *

12 _)21

E 1 E 2

(a)
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* 23 32
S 23 * * (b)

E E
2 3

(3.4.9)

* 31 13

S 31 * * (c)
E E
3 1

Here, E i' E 2 ' E 3 are effective Young's moduli associated with uniaxial

stresses in coordinate directions. A v appearing in (3.4.9) indicates an
ij

effective Poisson's ratio in which i is the direction of uniaxlal stress,

producing transverse Poisson's strain in the j direction.

We shall now discuss appropriate homogeneous boundary conditions which

are to be applied to an ortho£ropic specimen in order to determine the EEM

and Poisson's ratios in (3.4.4) and (3 4 8 - 9) T _ _,,e I...... _ is _,_sed

on the strain-stress relations (3.4.5 - 6) and the general theory of par. 3.2.2.

We shall establish for each EEM two dual sets of appropriate homogeneous

boundary conditions. It will be later seen that this is of crucial importance

for bounding methods of EEM.

From the technical point of view the important elastic properties are

the ones appearing in (3.4.4) and (3.4.8 - 9 , for these enter into governing

equations of structures of orthotropic materials and are also the ones which

are measured in the laboratory.

We start by listing below homogeneous displacement boundary conditions
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and corresponding average strain and stress matrices, for determination of the

three effective shear moduli. It is convenient, though not necessary, to

assume that the boundary conditions are applied to a cubical specimen whose

sides are parallel to coordinate planes.

G1___.3..2

o xl (bl u a (S/ = 0 (c/o x2 (a) u2 (S) = e 12uI (S)= e 12
(3.4. lo)

o 0_
"0 ¢ 12 ;

I-o o o{ (a) o
¢ 12 i ijl

T

0 0 O]

-0

= c12

0

°12
1

0 (b)

O:

(3.4.11)

G
23

G
12

_12

0

2e 12

(3.4.12)

uI (s): 0 (a) u2 (S)= e23 x3 o x2 (c)(b) u3 (S)=e23 (3.4.13)

0

i0

0

0

0

e23

0

0 _ '_

c (a) o,i
23: 1.1,

0 '

0
* 23

G
23 o

2e
23

-o o o

0 0 °23

0 o23 0

(b) (3.4.14)

(3.4. is)
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G
13

O

u I (S) = _ 13 x3 (a) u2 (s) = o (b) o Xl (c)u 3 (S) = ¢ 13 (3.4.16)

0

Io
Le 13

0

0

0

"1

0
6

13

0

0 '

G -
13

(a)

m

c_13

0
2¢

13

0 0

0 0

g13 0

°13

0 (b)

0
,J

(3.4.17)

(3.4.18)

It is seen that in each case it is necessaryto compute a single average

shear stress to determine the effective shear modulus.

Duallywe may subject the cubical specimen to homogeneous traction

boundary conditions. We list below the traction boundary conditions, the

corresponding average shear stresses and the resulting average shear strains.

G
12

o n2 (a) T 2 (S) = _°12 n 1 (S) = 0 (c)T 1 (S) = o 12

O
0 c_

12

= o12 0

t

0 0

.

0

I

o]

G 12

(a) i

0
(I

12

12

(b) T 3

0 ¢12

¢12 0

0 0

-¢

0

(b)

(3.4.19)

(3.4.20)

(3.4.21)
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G
23

T 1 (S)= 0 (a) T2

O

(s)= n3
(b)

0

T 3 (S) = _ 23 n2 (c) (3.4.22)

(_,.

i]

i-

0

= 0

0 0

0 0

O
0

23

G23 -

(a)
1]

O
U

23

2_
23

0 0 0

0 0 e23

0 ¢23 0

(b) (3.4.23)

(3.4.24)

G
13

O

T 1 (S)= o 13 n3

0 0

'_.. = 0 0

O
c; 0

13
,.

(a)

O

(_13 _

0

0

T2 (S) = 0

- 1

(a) !
ij.!

0
0

* 13
G -

13
2¢

13

(b) T 3 (S) = °13 n 1 (c)

- I

0 0 _131

0 0 0

¢ 0 0
13

(b)

(3.4.25)

(3.4.26

(3.4.2 7)

It is seen that now a single average shear strain has to be computed in

each case to determine an effective shear modulus. It is to be noted that dual

determination of the effective shear moduli by (3.4.12), (3.4.15), (3.4.18) and

(3.4.21), (3.4.24) , (3.4.27) is a direct consequence of the general assumption

of reciprocity of C ijkl and S ijkl tensors, which was discussed in par. (3.2.2).
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For the determination of effective Young's moduli and Poisson's ratios

itis convenient to use cylindrical specimens each of whose axes is in the

direction associated with the Young's modulus to be determined. Fig. 3.4.1

shows such a specimen with axis in x 1 direction. We list below homogeneous

traction boundary conditions with associated average stress matrices and

resulting average strain matrices which define the effective properties.

El' '_12' _13

T 1 (S)= qll nl (a) T2 (S) =0 (b) T3 (S)=0 (c) (3.4.28)

INijl= o

0

O

U

* ii
E -
1 -

¢
ii

0 0

(a)

o (a)

0

V __= - --
IZ

,il=

I

e22

ell

0 0
ell

w

0 e22 0

0 0

Co) ._ =
13

e33

¢33

ell

(b)

(c)

(3.4.29)

(3.4.30)

E2' _21' _23

T 1 (S) = 0 (a) o n2 (]3)T2 (S)= 022 T 3 (S)=0 (c) (3.4.3 i)

W

E
2

"0

0

0

(3

22

22

0

0
o
22

(a)

.

0 (a) ij

v21 -

I

ell

e22

Co)

ell 0

0 e22

_0 0

'_23 = - --

.

w

%3

e33

e22

Co) (3.4.32)

(c) (3.4.33)
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E3' '_ 31 'v32

T I (S) = 0 (a) T 2 (S) = 0 (b) T 3 (S) = %3 n3 (c) (3.4.34)

"0

0

0

0 0

0 0

0
0

33

"l

0
¢11

= 0 ¢22

0 0

0

0

e33

0 __ 1

(_ e 1* _ 33 * _ 1 * _ _22

E 3 - (a) v 31 - (b) v32 -

¢33 ¢33 ¢33

(b) (3.4.35)

(c) (3.4.36)

A dual determination in terms of homogeneous displacement boundary condi-

tions is not useful. Since such boundary conditions define average strains, it is

seen that (3.4. i) will have to be used and only C .. can be thus determined. The
U

complicated relations between the C ..and the S ..make such an undertaking ira-
i] z]

practical. "vVe can, however, obtain a simple dual formulation for the determina-

tion of effective Young's moduli and Poisson's ratios by use of mixed homogeneous

boundary conditions. Consider for example (3.4.28). We replace the traction

boundary conditions by the mixed boundary conditions

0

u I (S) =¢11xi (a) T 2 (S) =T 3 (S) = 0 (I)) (3.4.37)

O

where _ Ii may be interpreted as the ell appearing in (3.4.29b).
Then the

states of strain and stress in the specimen are still statistically homogeneous.

The components of the outward normal on the surface of the cylindrical

specimen shown in fig. 3.4.1 are subject to the following restrictions

n I = 1 n2 = n 3 = 0 onA H (a)

n I = - 1 n2 = n 3 = 0 OnAo (b)

n I = 0 on S C (c)

(3.4.38)

Application of the average strain theorem (3. i. 16) and of the average stress theorem



79

(3.1.26),with zero body forces, for (3.4.37) with (3.4.38), easily gives the results

- = o _2 = - =- =- =_3 =0 (3 4 39)eli e ii 2 o33 °12 o23 i " "

It follows from (3.4.39), (3.4.5) and (3.4.8 - 9) that

* °l 1 * e22 * ¢33
E - (a) v - (b) v - (c) (3.4.40)

1 o 12 o 13 o

11 _ 11 _ 11

We have thus obtained a dual formulation for E i' v 12 and v 13 which

requires the computation of Oll, e22 and ¢33 under boundary conditions

(3.4.37).

In a completely analogous fashion we can obtain similar results for the

other effective Young's moduli and Poisson's ratios, by using cylindrical

specimens with axes inx 2 and x 3 directions, respectively. These results

are now listed

o xz T3 (S)'=0 (a)T I (S) = 0 u 2 (S)= ¢ 22

- O

_22 e 22 _iI °33 = °12 = °23 _31 = 0 (b)

(3.4.41)

* °22 * ell * ¢33

E 2 - v - _23 oo 21 o

¢ 22 ¢ 22 ¢ 22

(3.4.42)

o x3T 1 (S)= 0 T 2 (S)= 0 u3 (S)= _ 33

-- O .....

¢33 ¢ 33 °i1 °22 °12 = °23 = °31 = 0

(a)

(b)

(3.4.43)
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, 033 * ell * 22

E3 o _ 31 o 32 o

e 33 ¢ 33 ¢ 33

It is emphasized again that all the problems listed are very difficult to

solve since the elastic fields in the specimen, which must satisfy phase

differential equations and phase interface continuity, have to be found in

order to compute the required stress and strain averages.

(3.4.44)

3.4.3 Square Symmetric and Transversely Isotropic Materials

A square symmetric material is an orthotropic material in which two

axes x 2 and x 3 say, are elastically equivalent. This means that the stress-

strain law is insensitive to a 90 ° rotation of the x 2 , x 3 axes around the x 1

axis. As will be seen later the square symmetric material is in a certain

sense the two dimensional analogue of a cubic material.

A transversely isotropic material is one in which the x I axis is an

axis of rotational elastic symmetry. This means that the elastic stress-

strain law is insensitive toany rotation of the x2, x 3 axes around the x 1

axis. This material is thus a special case of the square symmetric material.

An example for a geometrically square symmetric material is the square

array of circular fibers, shown in fig. 9.1.5. The most important case in

which such a material is also elastically square symmetric is when the

phases elastic symmetry is not less than square, with fixed axes parallel

to x I, x 2, x 3. This, of course, includes transversely isotropic and
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completely isotropic phases as special cases.

The most important case of symmetry in a FM or FRM is transverse

isotropy, since it is applicable to random and semi-random geometries. Sup-

pose that the transverse plane geometry is of such nature and that the phases

are transversely isotropic, with fixed x I axis, or completely" isotropic.

Another case of some interest is transversely isotropic or isotropic matrix and

orthotropic fibers with fixed x I axes and the other two axes randomly oriented

in the x 2 , x 3 plane. If the geometry has no directional bias in the statistical

sense, in the x2 , x 3 plane (statistically transversely isotropic geometry,

see chapter 2.2), then the material described cannot be expected to have any

directional bias in the x 2 , x 3 plane for its effective elastic behavior. It may

thus be assumed that the material [s elastically transversely isotropic. This

is the most important kind of FRM since it is of such frequent occurrence.

Another example is the hexagonal array of identical fibers, fig. 2.1.6"

with same restriction on phase elastic symmetry. The transverse isotropy of

this material is a consequence of the theorem that a material which has an n

fold axis of symmetry where n = 3, 5, 6, .... is transversely isotropic , see e.g.

Love [3.3 ] . In the present case n = 3.

It is easily shown that for square symmetry there are the following

relations among the EEM of (3.4.1 - 2).

* * * * * *

C 12 = C 13 C22 = C33 C44 = C66 ( 3.4.45)

If the material is transversely isotropic there is added to (3.4.45) the relation

* 1 * *

C55 - 2 (C22 - C33 ) (3.4.46)
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The effective stress strain relations of both materials are thus

-- * -- * -- * --

(Jll = C 11 ell + C 12 e22 + C 12 e33

-- * -- * -- * --

a22 =C12 eli +022 ¢22 +C23 ¢33

-- * -- * -- * --

a33 = C 12 ell + C23 e22 + C22 ¢33

=9_.
_12 -- 44 c12

square symmetry a =2C ¢
23 55 12

(a)

(b)

(c)

(b)

transverse isotropy aa23 = (C22 - C23) ¢23 (c)

(3.4.47)

(3.4.48)

ItJsseen that

aa13 = 2C 44 e13 (d)

there are six independent EEM for square symmetry and five

for transverse isotropy.

Inversion of (3.4.47) shows that the normal strain-normal stress

relations have the form

-- * -- * -- * --

¢11 =Sll (Jll +S 12 o'22 +S12 °33

-- * -- * -- * --

, e22 =S12 °ii +$22 aa22 +$23 aa33

(a)

(b) (3.4.49)

¢33 =S12 all +$23 a22 +$22 aa33 : (c)
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where

C +C
* = 22 23 (a)

Sll * * * * 2
C11 (C22 + C23) - 2 C 12

C
* = 12 (b)

S12 * * * * 2
Cll (C22 +C23)- 2 C12

* * * 2
C C -C

* 11 22 12 (c)

=[ * * C23) * 2] * *$22 Cl 1 (C22 + -2C12 j (C22 -C23)

(3.4.50)

* * * 2
C C -C

* = _ i i 23 12 (d)
S23 r * * * * 2] * *

i C (C +C _ C, (C -C ^)
L 11 22 23 ) - - - 12 j " 22 2,_

The inversion of (3.4.48) is of course immediate and need not be written down.

It is seen that the effective strain-stress relations of the square symmetric

and transversely isotropic materials have the same kind of symmetry as

their effective stress-strain relations, as they should.

The C ..set of EEM while notationally convenient for writing stress-
i]

strain relations is inconvenient for computation of EEM. We shall therefore

introduce a different set which is both analytically convenient and physically

significant. We firstwrite down the new set and we shall then explain its

physical significance and listthe boundary conditions which have to be
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applied to fiber reinforced specimens in order to compute them.

set is for transverse isotropy.

n =C
11

L =O
12

* 1 * *

k = -_-(022 + 023)

GT=--2 (C z-C

The new

(3.4.51)

(3.4.52)

(3.4.53)

(3.4.54)

G A =C44 (3.4.55)

For square symmetry there is added

!

G T = C 55 (3.4.56)

In order to define the boundary value problems which have to be

solved to compute these EEM it is convenient to consider a cylindrical

specimen in which the fibers are parallel to the axis. For n and I

determination we apply the homogeneous displacement boundary condition.

O

u I (S)= ¢Ii Xl (a) u2 (S)=u 3 (S)= 0 (b) (3.4.57)

By the average strain theorem (3.1.18) the average strains are

f Oell 0 0

!
=)o o o
(

io o o
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Then from (3.4.47) and (3.4.51 - 52)

,oC;li = n e 1 (a)

-- -- * O
_,_ = o_ = _ ¢ (b)

IIZ&

(3.4.58)

It is seen that (3.4.57) corresponds to uniaxial straining with transverse

deformation prevented _by a smooth rigid enclosure, for example).

Determination of n and _, requires computation of axial and transverse

average stresses.

The modulus k is called effective transverse bulk modulus. To

obtain it we impose on the cylindrical specimen the homogeneous displace-

ment boundary conditions

O O

u I (S) = 0 (a) u2 (S) = e x2 (b) u3 (S) = e x 3 (c) (3.4.59)

By the average strain theorem the average strains are then

_0 0 0

O

0 ¢
A

(3.4.60)

which is an isotropic plane strain. Inserting (3.4.60) into (3.4.47) and using

(3.4.51) , (3.4.53), the surviving average stresses are

- *O

c_ii = 2 Q., (a)

_22 = _33 = 2k* c° (b)

(3.4.61)
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We thus have isotropic average stress in the transverse plane and an axial

average stress which is due to the plane strain restraint (3.4.59a).

A dual formulation is obtained by use of mixed boundary conditions

in the form

O O

u I (S) = 0 (a) T2 (S) = o n2 (b) T 3 (S) = o n 3 (c) (3.4.62)

Fig. 3 4 2 illustrates such a situation _lllng fq 4 qe_ +_........

strain theorem (3.1.16) and the average stress theorem (3.1.26) (with no

body forces) yield for (3.4.62)

- - - = o - - - = 0 (3 4 63)ell = 0 _22 = 033 o o12 = o23 = o31 . .

Introducing (3.4.63) into (3.4.47) and using (3.4.53) we find

O

¢22 _33 * (3.4.64)
2k

The EEM G T and G A are evidently effective shear moduli as is seen

from (3.4.54 - 55) and (3.4.48) . It is seen that G T is involved in shearing

in the transverse x 2, x 3 plane; hence it is called effective transverse shear

modulus. On the other hand O A is involved in shearing in x I x 2 and x I x 3

planes, which contain the axis i.e. fiber direction; hence it is called

effective axial shear modulus. The formulation of boundary value problems

to determine these EEM is just as .or the effective shear moduli in orthotropic

FRM. G T is the analogue of G23 , eqns. (3.4.13 - 15) and (3.4.22 - 24);
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G A is the analogue of either one of G12 orG13, eqns. (3.4.10 - 12),

(3.4.16 - 18), (3.4.19 - 2 i),(3.4.25 - 27). All these boundary conditions

may now be thought of as being applied to the present cylindrical specimen.

See fig. 3.4.3.

Discussion of the square symmetric material is almost identical.

#i w

The EEM _ ,

!

is otropy a nd G T

determinat ion, eqn.

, k and G A are to be determined just as for transverse

is now the analogue of the orthotropic G 23' For G T

(3.4.54), the homogeneous displacement

ui (s)= 0
O O

u2 (S)= e x2 u3 (S) =- ¢ x3 (3.4.65)

may be applied to the specimen.

m

0

- 0

{

0

-I
0 0

o{e:
0 • °

Then from (3.4.47)and (3.4.54)

O

522 =- °33 =2 G Te

This yields

(3.4.66)

(3.4.67)

°ii c_12= 3 °13 = 0

It follows from (3.4.66 - 67) that G T relates average shear stress to average

! !

shear strain in the system of axesx 1, x 2, x 3 where (x_, x 2) = (x;, x 3) =45 °.
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It is of interest to note that both the transversely isotropic and

square symmetric materials are isotropic in axial shear. To see this suppose

that the specimen is subjected to average pure shear

r 1]

rO - O"
_12

_12 0 0 1

o o o!

Then

0 2GA ¢ 12 0

lall 2GA _12 0 0

0 0 0]

Now tf the x 2 , x 3 axes are rotated to new posittons(x 2 , x 2)

then by tensor transformation

_12 = c12 cos g _'12 =2 G A el2 cos 8

= (x'3 , x3): g

and so

a'12 =2 G A c'12

which proves our assertion.

The EEM k and G
T

are sufficient to describe transversely plane

states in transversely isotropic materials. Suppose that through application

of appropriate homogeneous boundary conditions the average state of strain

imposed is
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! 0 0
¢22 ¢2_

e23 ¢23

(3.4.60)

It is convenient to split the strain system (3.4.68) into so-called isotropic

and deviatoric parts. The separation is given by

e6 + ea (a)¢(X 8 aB

- 1 - 1 (--02_=Te =-- +J ) Co)yy 2 2 33

(3.4.69)

m

where e 6 is the isotroplc part and ea^_ the deviatoric part. Here,a8

and from now on indices which have the range 2, 3 are denoted by Greek

letters _ , P , etc. while i, jand other latin Indices continue to range

over 1, 2, 3. If (3.4.68) is inserted into (3.4.47 b,c) and (3.4.48c) these

three expressions can be written compactly as

a=2k ¢

saB = 2G T ea_

(a)

(b)

(3.4.70)

where

m

=o_ +s (a)

i 1 -- --

= T _ = -- + (b)7 Y 2 (o22 o'33 )

(3.4.71)
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It is / seen that (3.4.70) is a two dimensional isotropic stress-strain relation

where k plays the role of a two dimensional bulk modulus. Hence the

name transverse bulk modulus.

Note that the representation (3.4.70) fails for the square symmetric

material, In this case (3.4.70b) is valid only for a 8 = ll, 22 while for the

case c_ _ = 12 (3.4.70b) must be replaced by (3.4.48b). The resulting

W

stress-strain relation which involves k , G T

analogue of a cubic stress-strain relation.

and G" is the two dimensional
T

We now consider other EEM which are primarily of engineering

importance, namely effective Young's moduli and effective Poisson's ratios.

Comparison of the strain-stress relation (3.4.49) with its general ortho-

tropic counterpart (3.4.5) shows that in the present case

$12 =S 13 $22 = $23 (3.4.72)

it follows from (3.4.72) and (3.4.8 - 9) that

* * * W

=_ E =E
12 13 2 3

* W 9: W

_23 = v32 v31-- v21

We now introduce the following notation

W W

E 1 = EA (3.4.73)

W * W

E 2 =E 3 =E T (3.4.74)
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(3.4.75)

* * (3.4.76)
_23 = _32 = _T

where E A is the effective a_dal Young's modulus, E A - the effective

transverse Young's modulus, _A - the effective axial Potsson's ratio, and

-the effective transverse Poisson's ratio.
T

The problems involved in the computation of (3,4.73 - 76) have been

previously discussed for the orthotropic materialo For E A and "0A the

formulations (3.4.28 - 30) and (3.4.37) (3.4.39 - 40) are appropriate. For

E T and '0 T
we can use (3.4.31 - 33) or (3.4.41 - 42) or the other remaining set.

Note that it follows from (3.4.9c), and (3.4.73 - 75) that

* * - ET * (3.4.77)
u21 = _31 * ')A

E A

By use of (3.4.8 - 9) and (3.4.73 - 77) we can now rewrite (3.4.49)

in the form

11

¢22

33

1

E
A

'V

_ A

E A

'V

A

E A

m

O

11

_Ii

m

°ii

'vA

E A

1
+7

E
T

'v
T

E
T

m

%2

u

o22

q

o22

A

E A

T

E
T

1
+_

E
T

m

o33

033

m

033

(a)

(b)

(c)

(3.4.78)
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It is important for computational purposes to relate the EEM appearing

in (3•4• 78) to previously defined EEM. Note that identification of the S ..

in (3.4•49) with the coefficients in (3.4.78) , and use of (3.4 •50) immediately

* * * * "k

gives EA, E T, v T and vA , in terms of Cij
• We have

* 2
2C

EA * _ 12 (a)=CII . *

C22 + C23

, C12

VA . , (b)
C +C

22 23

ET=

* * * * 2] (C22 _ C• II(C22 +C23) -2 C12 .] 23 )

* . * *

C C -C
ll 22 12

(c)

(3.4.79)

* * * 2
. C C - C

11 2 3 12 (d)
v T , . .

C C - C 2
11 22 12

Introduction of (3.4.51 - 54) into (3.4.79) gives the results

* * * * 2

EA= n -4k v A

L =2k _A
I

(3.4.80)

(3.4.81)



93

where

E =
T

4k G
T

k +m G T

, k -mG T 2

_T = =I-* * * W

k +rag T l+k/mG T

re=l+

E
A

(3.4.82)

(3.4.83)

(3.4.84)

From (3.4.82) - 83) there follows the important relation

q .. E T

GT= ,

I 2 (i+_ T )

(3.4.85)

which is identical to the well known relation in isotropic elasticity.

For the square symmetric material (3.4.78 - 85 ) are stillvalid in the

x I, x2 , x3 coordinate system. The difference between the square symmetric

and transversely isotropic materials appears when the x2 , x3 axes are rotated

!

around the x I axis to new positions x_2, x3 " We may then define trans-

verse Young's modulus, Poisson's ratio and shear modulus with respect to the

new system of axes. In the transversely isotropic material these will have

the same values as in the x I, x2 , x3 system but in the square symmetric

material they will be different and will have to be found by tensor transformation.
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To describe the effective elastic properties of a macroscopically

transversely isotropic or square symmetric material any convenient set of

five or six independent EEM, respectively, may be used. Care should be

taken that the EEM be independent. For example E T, G T, and _T are

related by (3.4.85) and thus count as two EEM.

Finally we list stress-strain relations of homogeneous transversely

isotropic and of completely isotropic phases, since we shall have frequent

occasion to refer to these. On the basis of the treatment given above we

can write transversely isotropic stress-strain relations as

Oll= n ¢ii + _ ( ¢22 + ¢23 ) (a)

°22 = £ ¢11 + (k + GT) e22 + (k -G T) ¢33 (b)

o33 = £ ell + (k - GT) _22 + (k +O T) _33 (c)

o12 = 2 G A _12 (d)

°23 = 2 G T ¢23 (e)

°31 = 2 G A _31 (f)

The strain-stress relations are

1 A

_ll EA °ll EA (%2 + °33) _)

(3,4.86)
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VA 1 VT

¢22 - EA _iI + _ G2Z ET 033

VA VT i

e33 - EA °11 E T a22 + E T a33

_ a12

el2 2 G A

(c)

(d)

(3.4.87)

_ 02 3

e2 3 2 G T
(e)

a3 1
- (f)

e31 2 G A

All of the relations (3.4.80-85) are obviously valid for the elastic constants
in (3.4.86-87).

The isotropic stress-strain relations are written in the well known

compact form

a = ke 6 +2G ¢.. (3.4.88)
ij kk ij l)

Comparison of (3.4.86) with (3.4.88) shows that for an isotropic materi_al

n =k+ZG (a)

= I (b)

k = +G (c)

(3.4.8 9)

_3T = t_A = G (d)

The modulus k is called plane straip bulk modulus for the isotropic material.
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The modult ), and G

Poisson's ratio v by

are related to the Young's modulus E and the

% -_-

VE

(1+v)(i-2v)

E
G"

2

(a)

(b)

(3.4.90)

For an isotropic material we thus have

EA=E T =E

_)A= VT = v

(a)

(b) (3.4.91)

k = E _ G (c)
2 (l+v) (l-2v) i-2_

3.4.4 Isotroplc Materials

Finally, we consider the case of a statistically isotropic heterogeneous

material. Obviously a uniaxial fibrous or fiber reinforced material cannot be

Isotroplc. However, ifthe fibers are oriented in many different directions

in a completely random manner, fig. 3.4.4 , the material may assumed to be

statistically Isotropic. In that case the well known reduction of the general

anlsotroplc Hooke's law to the Isotropic case (see e.g. [3.i]) is valid.

Eqns. (3.3.9) reduce to

cij = I ekk 6ij +2G eij (3.4.92)

L __
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where _ is the effective Lam_ modulus and G

modulus.

is the effective shear

The three dimensional separation of oij and ¢ ij into isotropic

and deviatoric parts is

_iJ = _ 6iJ + sij (a)

- 1 -
a =- a (b)

3 kk

(3.4.93)

¢ij ¢ 6ij +eij (a)

- 1 -

(3.4.94)

Introduction of (3.4.93 - 94) into (3.4.92) leads to

a= 3K e (a)

(3.4.95)

sij =2 G eij (b)

where K is the effective bulk modulus given by

* * 2 *
K = ;k + _ G (3.4.96)

An effective Young's modulus E is defined by application of average

uniaxial stress in any direction, x 1

and E is defined by

n

. all
E = --

¢Ii

say. Then the average stress is (3.4.29a)

(3.4.97)
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The effective Poisson's ratio v is defined by

+22

¢11

e33

¢11

(3.4.98)

Introduction of (3.4.29a) into (3.4.92) gives

* 9K G

3K +G

ko .4. ==;

* 3K -2 G

2(3K +(3

(3.4. 100)

These results are, of course, the same as in classical elasticity theory

for homogeneous Isotropic bodies.

3.4.5 Structural Relations for Effective Elastic Moduli

Classical procedures to find the number of independent effective

elastic moduli for various FRM have been exploited in the preceding paragraphs

of this chapter. It is necessary at the present time to re-examine the concept

of independence of elastic moduli.

Independence or non-independence of elastic moduli is based on

available information. Thus the generalized Hooke's law (3.2.2) contains
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at first sight 81 elastic moduli.

tensors are symmetric reduces the number to 36.

energy function further reduces the number to 2 I.

said about internal structure of the material.

The information that the stress and strain

The existence of an elastic

So far nothing has been

The existence of planes of elastic symmetry, axes of rotational

elastic symmetry and equivalent elastic directions is information which is

based on some knowledge of the internal structure of the material. Examples

of this kind have been given in paragraphs 3.4.3 - 4. However, the

information is expressed in a macroscopic sense. From a formal theoretical

point of view one can very well consider elastic symmetry without knowledge

of its origin.

In the present paragraph we consider additional structural information

which is of purely microscopic nature and is peculiar to the heterogeneity

of the material. To give some conceptual examples consider the periodic

square and hexagonal arrays of equal circular fibers shown in figs. 2.1.5 - 6.

On the basis of the results given in par. 3.4.3 only, we know that in the

first case there are six independent EEM while in the second case there are

five. It is clear that in both cases the EEM are functions of the phase moduli

and the ratio a/d where a is fiber radius and d is the spacing. This may be

symbolically expressed in the form

c ij= c ij(_c,a/d)
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where C stands for phase moduli. In principle, a/d could be eliminated

between any two modult which would result in a relation between these

moduli, involving only phase properties. We have thus reached the conclu-

sion that there is a relation between any two EEM in the cases considered

and thus each material has really only one independent EEM. The reduction

from six to one or five to one was based on detailed knowledge of the internal

geometry of the material. But it should be noted that the fact that there is

only one independent modulus is here of no usefulness since the relations

are not known for the materials under consideration. Surprisingly enough,

however, it is possible to establish some general relations between some

of the EEM of two phase fibrous or fiber reinforced material of arbitrary

phase geometry. These remarkable relations have been established by

Hill [3.5 i and shall now be derived.

Suppose that a cylindrical specimen of the composite is subjected to

homogeneous displacement boundary conditions (3.3.1) with average strain

matrix

O
0ell

0
0 ¢

0 0

0

0

o

(3.4. lO l)

The boundary displacements are then
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o xl (a)u 1 (S) = e 11

0

u2 (S) = ¢ x2 (b) (3.4. 102)

0

u 3 (s)= c x3 (c)

This corresponds to average uniform straining in x 1 direction and average

isotropic straining in the x 2, x 3 plane. We insert the strains (3.4.101)

into the stress-strain relations (3.4.47) which are valid for square symmetric

and transversely isotropic materials. Adding (3.4.47b,c) and using the

notation (3.4.51 - 53) we obtain

- * 0 * 0
_.. = n ¢.. +2 _ e (a)
II II

(3.4. 103)

O * 0
+ 2 k e (b)=z c11

I

where _ is defined by (3.4.71b).

The average stresses may be written in terms of phase averages as

was done in par. 3.3.3. Thus

- _) vz (a)°11=_11(i) vi +Gt

_ = _(_ vl +G( 2)v2 _)

(3.4. 104)
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It is notationally convenient to assume that the phase materials are square

symmetric or transversely isotropic with elastic axes parallel to the

composite's x I, x 2, x 3 system. Then the phase stress - strain relations

are of the form (3,4.86) and it follows very simply that phase averages

obey relations of the form (3.4. 104). For example

,I,°I(I)i = nl ¢ ) +2 01 ¢

To continue we no.eM m r_,,]+ which is of .... '-'........... ,_,u,_- impo,_Lano_ here.

It will be shown later in par. 3.5.1 that for boundary conditions of type (3.4. 102)

the strain ell is uniform in both phases. (See eqs. (3.5.10a)) We thus

conclude that in the present case

- (i) (2)= _ (12) oell = ell 1 = ¢ii (3.4.105)

Consequently the phase stress averages assume the following forms

- (i) o - (i)
(711 = nl ell +2 _'i ¢ (a)

(3.4. 106)

- - (i)
(1) o + 2 k I ¢ (b)o =_i_Ii

(12 o - (2)-o1 ) = n2 ¢11 +2 _'2 ¢ (a)

o - (2)
_(2)= £2 _II +2 k2 ¢ (b)

(3.4. 107)

Now substitute (3.4.106-107) into (3.4. 104) and the resulting expression

into (3.4. 103). After rearrangement we find
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* 1

-kl )v 1+_(2)(k -k 2) vz+-f-
O *

e 11 (_ -_2 v2-_lVl ) = 0
(a)

(3.4.i08)

- i o *

- _i ) vi + ¢ (2) (_*__2) v2 +__ ,ii ( _ - n 2 v 2 - n I v I)
=0 (b)

- (i) -
Eqns. (3.4.108)determine ¢ , e

(2)
in terms of effective moduli,

phase moduli and volume fractions. There is, however, a third equation

- (i) - (2) o
¢ v I + e v 2 = e (3.4.109)

from the average strain theorem. Consequently eqns (3.4. i08-i09) are not

independent. If any two linear equations in two unknown are the same,

their coefficients must be proportional. Nowit should be borne in mind that

0
e and
ii

0

e are independent quantities. So assumption that (3.4.109) is

identical to any of (3.4. 108) would lead to specification of the ratio

o I/ ¢oe 1 which is a contradiction. We thus conclude that (3.4. 108a,b)

are the same. Therefore

k - k I k - k 2 - (_iVl + _2v2)

- _i _' - _2 n - ( nlVl+n2v2 )

(3.4. ii0)

It thus follows that if any EEM of the group k , _, , n is known, the other

two follow from (3.4. 110).

It is easily shown that the first pair in (3.4. i0 ) leads to
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k - k 1 k - k 2 k 2 - k 1
_--. mm

i_.- _i £ - _2 £2 - _I

(3.4. iii)

We see that each modulus is linearly related to another one. Thus

k (_2 - _i) - _ (k2 - kl) = L2 kl - _I k2 (a)

9r *

(L2 -L i) -n (k2 - k I) = /" (_2-_i) - n (k2-k I) (b) (3.4. 112)

* _2-L1 . k 2 - kl £2 - £I k 2 - kl
' k

k2-kl _ - _i k2 - kl _2 - _i
(c)

where

n = nlVl+ n 2 v 2 (a)

= + _2 v2 (b)_I v I

(3.4.ii3)

Itis to be noted that for isotropic phases n , p, and k are given

by (3.4.89).

Itis nov,,seen that because of the relations (3.4.80-81) and (3.4.110),

* * * * *

EA and _A can also be related to _ , n and k . This can of course

[3.5] is preferable.

For this purpose, eqns. (3.4. 103) are rewritten in different form. Ifthe

strains (3.4.101) are substituted into (3.4.70) it is easily seen that

be done by simple algebra but the method given by Hill
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022 = o33 = c_

Therefore (3.4.78a) can be written as

- * - EA o (3.4.114)Oll = 2_A (_ + ¢ 11

which is the equivalent of (3.4.103a). Also use of (3.4.81) in (3.4. 103b)

transforms this equation into

0 O" * 0
t = h) ¢

• A ii
2k

(3.4.11s)

The same procedure previously used is now employed in (3.4.114-115).

This is left as an exercise to the reader. The results are

i 1 1 i i i

k k 1 k k 2 ,o - "OlVl-'o 2 v 2 k.1 k 2

'oA - v 1 VA-V 2 _ 1__4(EA-ElVl-E2v2) v1 "o2

(3.4. 116)

where the last equality follows directly from the first pair. Ifthe phase

materials are square symmetric or transversely isotropic, then E l, Ep, uI and

v2 are the axial Young's moduli and Poisson's ratios respectively of the phases.

For isotropic phases they are the usual Young's moduli and Poisson's ratios.

Eqns. (3.4. 116) give the following linear relationships between the quantities
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1 * *

--_ , vA and E A.
k

. 4 (v 2

EA=E+

* 2 I
v --_÷
A 1 1

k 2 k 1

r1
k

(3.4.117)

(3.4. 118)

where

E=E1Vl +E2 v2 (a)

V=_l Vl + _)2 v2 (b) (3.4. 119)

i_____) v I v
_ +2

k I k2
(c)

A numerical verification of one of the general relations between the

various EEM is shown in fig. 3.4.5. Numerical values of EEM of a regular

hexagonal array of identical circular fibers (fig. 2.1.6) have been obtained

with the aid of electronic computers in ref. [3.6 ] . The numerical values of

and k have been plotted for various fiber volume fractions while the

straight line represents (3.4. l12a) for the phase elastic properties used

in [3.6J, It is seen that there is excellent agreement with (3.4.112a) ,
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3.4.6 Effective Elastic Modult in Terms of Phase Averages

We shall here reduce the general results obtained in par. 3.3.3 to

uniaxially FRM. This reduction must be performed with four subsoript notation

for elastic moduli. We note in this respect the relations (3.4.3) for a macro-

scopically orthotropic FRM and we set down here similar relations for macro-

scopically square symmetric and transversely isotropic FRM. In view of

(3.4.3) and (3.4.45) we have

* * * * *

c =c c =c =c (a)
1111 11 2222 3333 22

* * * * *

Cl122 = C 1133" C 12 02233 =023 (b) (3.4.120)

C1212 =01313 = C44 C2323 =055 (c)

for the square symmetric FRM, and all others vanish.

For the transversely isotropic FRM the last of (3.4. 120c) is replaced by

* 1 * *

C2323 - 2 (022 -023 ) (3.4.121)

because of (3.4.46).

We also note that for tsotropic phases

C 1111 = C2222 = C3333 )" + 2G (a)

Ci122 = 02233 = 03311 = _ (b) (3.4. 122)

C1212 = C2323 = C3131 =G (c)
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We start with the transverse bulk modulus k of a square symmetric

or transversely isotropic FRM, whose constituents have at least the same

symmetry. Appropriate homogeneous boundary dis placements and associated

average strains are given by (3.4.59 - 60). Now consider (3.3.32) for the

present specific case. The relations are written out for ij = 22, 33, taking

into account (3.4.60), (3.4. 120) and the constituent symmetry, and are

then added together. The result is easily found to be

(2)m

C

k I + (k 2 k 1) o v2 (3.4. 123)
e

where _ (2) is given by

3(2)= %/21 / 1.__ (¢_2)+ ¢_23))

V 2

dV

and k I, k2 are the transverse bulk moduli of the phases.

Next we consider the axial shear modulus G A. We apply the average

strain system (3.4.11) and write out (3.3.32) for ij = 12. Taking into account

(3.4. 120) it easily follows that

- (2)

* el2

GA = G1 + (G2 - G1) o v2 (3.4. 124)
¢

12

A similar procedure for transverse shear, with the homogeneous displace-

ment system (3.4.13), yields
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.
G T =G 1 + (G2 - G I) _ v2 (3.4.125)

¢
23

There is no difficultywhatsoever in finding similar expressions for

other EEM such as n , _ , EA etc. Howevei',the expressions are not as

simple as (3.4.55 - 57) , since they 'involveaverages of several strain

components over phase 2. In this respect it should be recalled that if k

can actually be computed by use of (3.4.123) , then n , _ , E A and _A

can be found by use of (3.4. 112), (3.4. i]_7)and (3.4. 118), respectively.

It is also possible to establish expressions for EEM in terms of phase

stress averages by use of (3.3.36). For k we apply (3.4.62) with

associated averages (3.4.63). We then obtain by a similar method

_ _ (2)
i i + ( i i ) __ (3.4 126)
* ki k k o v2k 2 1 c

1
where _ (2) is the average of -_- (o22 + o33) over phase 2.

we find by use of (3.4.19 - 20) and (3.4.22 - 23)

Similarly,

l i 1 1 _(2)12
* + ( ) o v2

G A G 1 G 2 G 1 c 12

(3.4. 127)

i 1 i i c
- + ( ) v2* O

GT G1 G2 G1 _23

(3.4.12 8)

Establishment of expressions forEEM in terms of averages over one

phase is also a straightforward affairfor orthotropic FRM.
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3.5 EXACT SOLUTIONS

3.5.1 Formulation of Boundary Value Problems

As has been mentioned in chapter 3.3 the computation of EEM or EEC

calls in general for a detailed solution for the stress or strain fields in a

heterogeneous body, under homogeneous boundary conditions. Such

elasticity problems have been formulated in chapter 3.2 for the general two

phase body. In a uniaxially fibrous or fiber reinforced specimen the problem

is much simplified, though still formidable, because of the cylindrical

geometry. Therefore, such problems will now be discussed for the specific

case under consideration.

It is assumed that in any cylindrical fiber reinforced specimen the

fibers are continuous from base to base in the cylindrical specirnen. In

practice there are always broken fibers and so the present analysis cannot

account for the state of stress near fiber breaks. The local stresses which

occur there are of great importance for failure considerations; they are,

however, of negligible importance for effective moduli calculations since,

as has been seen_such calculations involve averaging over a representative

volume. (It should be borne in mind that the problem of the state of stress

near a fiber break is of such complexity that it defies exact analysis at the

present t ime. )
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It wilt also be assumed that the cylindrical specimen's height is much

larger than a typical cross section dimension, so that Saint Venants principle

applies with respect to stress distributions on the end faces. It should be

noted that the boundary value problems to be formulated here apply for any

long two phase cylinder whose cross section geometry is invartant with

he ight.

Let the specimen be subjected to the homogeneous displacement boundary

condition

O

u (s)= , xji tj
(3.s. 1)

0
For present purposes it is convenient to split the ¢

lj
matrix in (3.5. i), thus

O

Jell

0

0 0

o 0
¢ ¢

22 23

0 0

0 ¢23 ¢33

[0

+ ¢°12

,°13

O O

e lz e 13

0 0

0 0

(3.5.2)

The boundary displacements associated with the firststrain matrix in (3.5.2)

are

u (s)= o (a)
I llXl

0

u2 (S) = e22 x2 + '23 x3 (b) (3.5.3)

0
o x2 + e x3 (c)u3 (S)= e23 33
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while the boundary displacements associated with the second strain matrix

are

o x2 + o x3 (a)u 1 (S) = ¢ 12 ¢13

0

u2 (S) = ¢ 12 Xl (b) (3.5.4)

0
u_ (s): ,,_ x, (o)
0 J.O I

If the specimen is subjected to homogeneous traction boundary

cond itions

0

T 1 (S) = oij nj
(3.5.5)

we proceed analogously. Thus

[- 0
0

11
0 0

Oj = 0 0

L_ij. L0 Oo2322°2_o
0 o °3--3

+

I 0 0
0 o12 o1:

0
Lo%o o

(3.5.6)

To these stress matrices correspond the boundary tractions

T1 (S) = G°II nl (a)

T 2 (S)=022 n2 + _23 n3 (b) (3.5.7)

T3 (S) = 023 n2 + 033 n3 (C)
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and

0 0

T 1 (8)= (712 n2 + c13 n3 (a)

O

T2 (S)= c12 nI (b) (3.S.8)

O

T3 (8)= c 13 nl (c)

The elasticity problems of the fibrous or fiber reinforced cylinder

with boundary conditions of type (3.5.3) or (3.5.7) are fundamentally dif-

ferent from those of the cylinder subjected to (3.5.4) or (3.5.6). We shall

begin with a discussion of the first type of problem and we shall afterwards

consider the second one. The cylinder geometry notation to be used is the

one employed in chapter 2.2 and fig. 2.11.

We shall assume for simplicity that there are two phases only.

However, the present formulation applies Just as well for any number of

phases. The phase: themselves are assumed transversely isotropic with

axes of elastic symmetry in x 1 direction. It will be seen that the formula-

tions developed are mathematically identical in the case of completely

isotropic phases.

The first problem may be conveniently formulated as one of plane

strain with uniform axial strain (see e.g. Love [3.3] ). According to such

a formulation
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_2) ou_ I) (K) = u _-) = ell Xl (a)

(i) 2(1) x3 ) (i) _i)u2 (x_)=u (x2, u3 _)=u (x2,x 3) (b)

(2) (2) u (2) 3(2) (c)u2 _) = u2 (x2' x3) 3 _) =u (x2, x 3)

(3.5.9)

Such a method of solution where some features of the solution are assumed

in advance, is known as semi-inverse in the theory of elasticity. The

justification of the assumptions is obtained ifthe problem which is formulated

on the basis of the assumptions is well defined and has a unique solution.

The strains associated with (3.5.9) are

(i) (2) o

ell = ¢ii = ¢ii (a)

¢(i) (I)
(212) (2) : 0 (b) (3 5 10)

i=
12 ¢13 = ¢ = c13 " "

(I) (i) (2) ¢ (2)
ca_ = ¢c_B (x2 x3) ¢ = (c)' ct_ c_ (x2' x3)

where it is recalled that greek indices such as 6, _ are confined to the

range 2, 3. Using the transversely isotropic Hooke's law (3.4.86) the

stresses are found to be

o_1) o + _, (_(1) + ¢(1) ) (a)1 = nl¢ 11 1 22 33

(21 (2)(7 ) = n2 ¢11 + z2 (¢(2)22 + ¢33 ) (b)

(3.5.11)
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o ] (i)O(1) = e + (kI _ G1 ) e(1) 6 + 2 G e (a)
a8 I ii YY] c_B i gS

(2) : [_, o +2 G 2 e (2) (b)
(3.5.12)

(I) ) :0q : (_13 = o 12 (c)

where G T has been denoted G for simplicity. It is seen that the stresses

(3.5. ll-]2)are not functions of x 1 . In view of this and (3.5.12c) the stress

equilibrium equations without body forces reduce to

= 0 (3.5.13)
aS,S

Inserting (3.5.12a,b) in terms of displacement derivatives into (3.5.13)

and using (3.4.89c) we obtain

u(I) +G u (I) = 0 inR 1 (a)kl B,_ct 1 0L,_B

k2 u (2) + G 2 u (2) = 0 in R2 (b)

(3.5.14)

where R 1 and R2 are the plane phase regions of a cylinder section, as the

governing differentialequations for the displacements u2 and u3. The

boundary conditions for these displacements are (3.5.3b,c) on the contour G

of the section. Note that (3.5.3a) is automatically satisfied by the choice

(3.5.9a) for Ul.

At the phase interface the continuity conditions (3.2.2 8a) must be

satisfied. Continuity for u I is already satisfied by the choice (3.5.9a).
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Hence, displacement continuity requires

u(z)= u(2) on
a (_ C12 (3.5.15)

To establish the tract ion continuity conditions (3.2.28b) we note that

the interface S 12

plane and thus

is cylindrical; hence the interface normal is in the x 2, x 3

n I = 0 on S12 (3.5.16)

In view of (3.2.14), (3.5.13) and (3.5.16), the interface tractions have

the form

T 1 = 0 (a)

T2 = q22 n2 + (_23 n3 (b) (3.5.17)

T 3 = 023 n 2 + o33 n 3 (c)

Therefore the traction continuity requirement is

1)q( n_ q(2) on C (3.5.18)0_8 n 12

In view of (3.5.12) this condition can be written in the form

kF U J] n LF (u(2) + u(2) c_) _(k 2 _G2 ) u(2)8,8_(k 1 _ G1 ) (1)B,S a + G2 a,_ S,

_ G1 (u(1) + (1) )]J n8 - _2 oa,_ u _,a = (Zl ) ell n a on C12 (3.5.19)
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This completes the mathematical formulation ofthe firstproblem. It is seen

that the initialthree dimensional problem has been reduced to a two dimen-

sional problem for the displacements u2 (x 2 , x 3) and u 3 (x 2 , x3).

Evidently the three dimensional uniqueness proof also applies to the present

two dimensional formulation.

We now turn to the case when the tractions (3.5.7) are applied. We

note that n 1 vanishes on the cylindrical boundary S and therefore T 1 alsoc

vanishes there. On the other hand we have on the terminal sections Ao,A H

= 1, n2 = n 3 = 0 onA Hn 1

n 1 = - 1, n 2 = n 3 = 0 onA °

Thus the traction boundary conditions may be written as

O

(711= _ii Xl = o, H (a)

O
T (C) = _ n (b)

c_B B

(3.5.2o)

(3.5.2l)

In spite of the traction boundary conditions it is analytically

convenient to retain the displacement formulation of the problem. Thus the

tractions have to be expressed in terms of displacement gradients, as was

done in (3.5.19) and the results must be equated to the right side of (3.5.21b).

The problem for u2 and u3 determination then again consists of (3.5.14)

with (3.5.15) and (3.5.19),and (3.5.3) is replaced by (3.5.21b). Again,
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the problem is unique for the determination of u 2 and u 3 in the specimen, but

here there arises a problem in the satisfaction of the boundary condition

o

(3.5.21a). The _11 stress in the phases is given by (3.5.11) where ¢11

is now unknown, while the (_11 dependent)strains ¢22 and _23 are determined

by the unique solution for u 2 and u 3. In order to comply with (3.5.22)

rigorously, the expressions (3.5. ll) must be equal to one and the same con-

(9
stant

ii" This can in general not be expected. Therefore it is necessary

to appeal to Saint Venants principle for long cylinders and to make the

much less stringent requirement that the stress resultants on the end faces

Ao , AH

faces.

be the same as the stress resultants produced by the applied tractions.

o

The stresses (3.5.21) produce only an axial force OllA on the end

There are no shear forces, torques or bending moments. In view of

(3.5.13) the solution produces no shear force or torque on any section.

The expression for axial force on the section is in view of (3.5. ii)

/_Ii dA= GO oii A = (nlA I + n 2 A2) _ ii

A
(3.5.22)

f + dA+,2 + )dA
(1) (1), /" (2) (2)

+ _'1 ( _22 ¢33 ) 22 ¢33

A1 A 2

o
Equation (3.5.22) serves to determine the unknown strain ¢

ll"

To make the bending moments on the sections vanish we must have

/°llX2 dA= /_llX3 dA= 0 (3.5.23)

A A
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These requirements may or may not be satisfied by the solution and must be

checked for each individual case. There are, however, two important cases

when (3.5.3) are known to be satisfied.

_ii is a symmetric function ofx 2 and x 3,

Oll(X2 , x 3) = Oll(-X2,X 3)

then since x 2 and x 3

Firstly, if the problem is such that

i,e,

= _ 1(x2'-x3)= °i i(-x2'-x3)

are odd functions, the integrands in (3.5.23) are also

odd functions. If also the section of the cylindrical specimen is chosen,

without loss of generality, as x 2 and x 3 symmetric then (3.5.23) is evidently

sat isfied.

Secondly, ifthe stress oII is statistically homogeneous, then its

variation over the section is of the kind shown in fig. 3.2.2 and it is evident

that the associated bending moment is negligible.

Finally, it should be noted that plane strain analysis of a fiber rein-

forced cylinder is included in the preceding development as a special case.

The plane strain situation is obtained by setting

O

¢ 11 = 0 (3.5.24)

in which event there is no axial displacement of the cylinder.

It is seen that in the plane strain case the only phase elastic moduli

which enter into the boundary value problem for the displacements and into

the expressions for o are k and G. If the phases are completely isotropic,

nothing is changed. The moduli k and G have now merely to be interpreted

as plane strain bulk modulus and as usual shear modulus, respectively.
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There is thus complete mathematical analogy between the plane strain pro-

blems for transversely isotropic and for isotropic phases and solutions for

the latter case can be rewritten at once as solutions to the former case.

Care must be taken to first rewrite any elastic constant in the plane strain

isotropic phase solution in terms of k and G.

Corresponding elastic constants for the analogy are given below

Isotropic Phases Transversely Isotropic Phases

k k

G G T
(3.5.25)

t k- G T

v 1(1 - G T/k )

The analogy expressed in (3.5.25) is here called the first isotropy-transverse

isotropy analoc.ly. It should be carefully noted that itapplies only to the

case of plane strain and not directly to the stress Oli as given in (3.5.11).

In the more general case of plane strain and axial strain, as previously

considered, there is no such direct analogy as (3.5.25) between the isotropic

and transversely isotropic phase solution since the modulus _ now also

enters into the problem through (3.5.19)and also through (3.5.7) in the

event that these are prescribed. Still, the transversely isotropic phase

problem is mathematically completely similar to the isotropic phase problem,

the difference between the two being merely in reinterpretation of constants.

Some consequences of the analogy described for EEM will be discussed

in the appendix to this paragraph.
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The present formulation of the problem is easily extended to the case

when both phases are orthotropic, provided that the elastic axes of the phases

are parallel to the cylinder axes. Let the orthotropic stress-strain laws

of the phases be given by

oº(m) (m) (m) + C (m) (m) + _ (m) (m) (a)
II = Cll ell 12 ¢22 t_13 e33

(m)
(m) =c,(m) (m)+_(m)¢ _2) + C(3) _33o22 --12 ell G22

_)

o.(m) (m) (m) + _ (m) (m) (m) (m) (c)
33 =C13 ell G23 ¢22 +C33 ¢33

(3.5.26)

0._2) =2C(4 ) ¢12(m) (d)

_2(3 _ (m) (m)) = 2 u55 ¢23 (e)

(m) =2-(m) ,_m) (f)0.31 G66 1

where m denotes the phase number, 1 or 2. Assuming again displacements

of form (3.5.9), the stresses in the phases become

(m)
(m) ¢11 +-(m) (m) + (m) ¢3 (a)°_?) =C11 (512 _22 C13 3

(2 (m) o +_(m) (m) (3) (m)c ) =C12 ¢II G22 _2 +C ¢33 (b)

o.(m) =c(m) o +C(3) (m) + (m) (m)33 13 ¢11 ¢22 G33 ¢33 (c) (3.5.27)
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_(m) _5) (m) (d)23 = 2 C ¢23

a_2)= a(m)=. 31 0 (e)

The equilibrium equations (3.5.13) remain unchanged. Insertion of

(3.5.27) into (3.5.13) and expression of the strains in terms of displace-

ment gradients, gives the differential equations

(m) (m) . r.. (In) u2 (m) . ,,... (m) (m), (m) ,_,"22 u2,22 ' "55 ,33 ' _'23 +C55 t u3,23 =0 _aj

(3. S. 2 8)

(m) +_(m) u(m) +- (m) ))u2 =o (b)C u3,22 G33 3,33 (C23 + C ,23

The continuity condition (3.5.15) remains unchanged while (3.5.19)

is replaced by

_(2) U (9.) + _(2) U(2) - (...(1) (1) + ,..,(1) U (1))] n2_22 2,2 _23 3,3 "_22 u2,2 _23 3,3

+

to.(I) _(2)) ,o
= t_12 -_12 11 n2

(1) -]
+ u ) j n3 =3,2

(a)

(3.5.2 9)

+ - c (1)(u (1) (1)
2, 3,2 55 2,3 u3,2 'in2

+ [C2(2)u(2)+2,2C3_3)u(2)-3,3(C(_) u(I)+2,2C33(I)u3(l,_)] n3=

=t--(i) _23) o"_13 -C ) ¢11 n3 Co)
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It is to be noted that the problem of the fiber reinforced cylinder under

boundary conditions (3.5.3) or (3.5.7) can also be formulated in terms of

Airy stress functions. However, this is analytically inconvenient for satis-

faction of displacement boundary or continuity conditions since representation

of displacements by Airy stress functions is only possible in terms of inde-

finite integrals of derivatives of stress functions (see e.g. [3.7] ).

An Airy stress function formulation has, however, been used by

Pickett [3.6] for numerical analysis of periodic square and hexagonal

arrays of circular fibers.

We now consider the second kind of problem in which the fiber rein-

forced cylinder is subjected to boundary conditions of type (3.5.4) or (3.5.8).

The present problem is also treated by a semi-inverse method. The displace-

ments in the cylinder are assumed to be of the form

u(#)(x) u(ii) (a)= (x2 ,x3)

u_2)(x_)= u_) (x2 ,x3) (b)

(3.5.30)

_i) _) ou (x_)=u (x)=,i2xi (a)

(i)(x) = u ) (x) = '13 Xl (b)
U 3 --

(3.5.31)

A displacement field as the one given above is called anti-plane in the theory

of elasticity (see e.g. lk4ilne-Thomson [3.8] ).



124

(1) (2)For reasons of convenience we define the functions _ and by

I Oi) (i) o x2 • x3 (a)u = <0 - ¢ 12 - 13

O2) (2) o x2 _ x3 (b)u = _0 - _ 12 - 13

(3.5.32)

The strains associated with (3.5.30 - 32) are then

= = s2 =0ell = c22 ¢33 3

(1)
(I) 1 3_ (i) i¢ - ¢ = -- (b) (3.5.33)

12 2 _x 2 13 2 _x 3

(2)=]. _._(2)
(2) _ 1 _(_ ¢13 2 _x 3

¢ 12 2 8x 2
(c)

The associated stresses are from (3,4.86)

all = c22 = q33 = c23 = 0 (a)

12 = G1 _x 2 13 1 _x 3 Co) (3.5.34)

c (2)_G2
12 _ x 2 a[23)= G2 _x3

where G now denotes the axial shear modulus GA.

(c)
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In view of (3.5.34) and the fact that the non-vanishing stresses are

not functions of x I, the only surviving equilibrium equation is

c12 _ c13
+ - 0 (3.5.35)

b x 2 _ x 3

Inserting (3.5.34) into (3.5.35) we find

(i) (1)
%0 + %0 - 0 inR
2 2 1

x 2 _ x 3

(a)

(3.5.36)

(2) (2)
<0 + %0 = 0 inR

2 2 2
x 2 _ x 3

Thus the functions %0(1) and (2) are plane harmonic (satisfy Laplace equations)

within the phase areas.

The boundary conditions (3.5.4b,c) are identically satisfied by the

assumed solution. Boundary condition (3.5.4a) with (3.5.28) leads to

o x 2 + 2 o x3(C) = 2 ¢ 12 el3 (3.5.37)

But note that it is also required that

o + 2e ° x 3 on A AHm(x 2, x 3) =2e12x2 13 o' (3.5.3 8)

The last condition can obviously not be satisfied by the present two dimen-

sional formulation. For a long cylinder, however, nonsatisfaction of (3.5.38)

produces only insignificant end effects.
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Because of the form of (3.5.31), continuity of u 2 and u 3 at phase

interfaces is satisfied. Continuity of u 1 requires in view of (3.5.28) that

(i) (2) (3.5.39)
=_ on C12

To set up the traction continuity conditions we recall that on the cylindrical

interface n I = 0. Furthermore, four stresses vanish according to (3.5.34a).

Thus the only nonvanishing traction component on the interface is

TI = o,^ n_ + o,^ n^ (3.5.40)

Inserting (3.5.30b,c) into (3.5.40)we find

5__(1) _ (2)
on C (3.5..41)

=G 2G1 _n bn 12

where the normal derivative is given by
_n

b<0 _ 5.9._- n2 + 5_ n3 (3.5.42)
n _x 2 _x 3

It is seen that the problem of axial shear is now defined in terms of the

functions _ (I) _p(2) which must satisfy the Laplace equations (3.5.36) the
I I

boundary condition (3.5.37) and the continuity conditions (3.5.39) and (3.5.41).

By a simple extension of the uniqueness proof for harmonic functions where

the function is prescribed on the boundary (Dirichlet problem; for uniqueness

(i) (2)
proof see e.g. [ 3.9 ] ) it follows that the functions _0 , %0 are uniquely

defined by the present formulation.
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Next we consider the fiber reinforced cylinder with the traction boundary

conditions (3.5.8). On the cylindrical surface S (3.5.16) must be satisfied
c

and also (3.5.20 - 21) hold on the terminal sections. Therefore (3.5.8)

assumes the form

o

TI(S ) = o n2 + o n 3 (a)c 12 13

T 2 (So)=T 3 (Sc) = 0 (b) (3.5.43)

o o

Oll= 0, °12 = q12' o13 = o13 onA ,A Ho (c)

The formulation (3.5.30 - 34) and its consequences also apply to the

solution of the present problem. The differential equations (3.5.36) and the

continuity conditions (3.5.39) and (3.5.4!) .remain unchanged. The boundary.

condition (3.5.36) is now replaced by (3.5.43a) which, in view of (3.5.34)

and (3.5.42), can be written in the convenient form

_ o o n3 on C (3.5 44)G bn - 012 n2 + q13

In (3.5.44) G and _ assume 1 and 2 values for parts of the boundary C which

are in the 1 and 2 phases respectively. Note that (3.5.43b) is identically

satisfied since the stress system (3.5.34) produces no T 2 and T 3 tractions

on any cylindrical surface.

The problem (3.5.36), (3.5.39), (3.5.41} and (3.5.44) is a plane

harmonic problem in which the normal derivative is prescribed on the boundary.
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This is known in the literature as the Neumann problem. The uniqueness proof

for homogeneous domains is well known (see eg. [3.9 ] ) and is easily ex-

tended to the present two phase case. Note that now _9 is uniquely defined

by the problem apart from an arbitrary additive constant. However, for strain

and stress calculation the arbitrary constant is immaterial since only deriva-

tives of _ are involved. In view of (3.5.32) the arbitrary constant is merely

_'_ body displacement of th_ whole cylinder in the x I direction.

It is seen that the first of (3.5.43c) is identically satisfied while

the other two are generally not satisfied. For a long cylinder this non-

satisfaction produces only insignificant end effects.

Evidently, nothing is changed in the formulation if the phases are

isotropic. In that case G A merely becomes the isotropic G. This implies

that any axial shearing displacement, strain or stress field for isotropic phases

is also one for transversely isotropic phases with G _ G A equivalence.

This analogy is called the second isotropy-transverse isotropv analogy,

complement ing the first one which was given above.

The preceding formulation of the axial shear problem is readily extended

to the case of orthotropic phases. Assuming again displacements of form

(3.5.30 - 31) and defining the functions g_(i) and _0(Z) by (3.5.32), it

follows from (3.5.33) and (3.5.26) that the only surviving stresses are
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(m) ___(m)

o(_2) = C44 _x 2

(13) = C66 _x 3

(a)

(b)

(3.s.4s)

The equilibrium equation (3.5.35) now leads to

(m) _2 (m) (m) _2 (m)"_ +
C44 2 C66 2

x 2 _ x 3

= 0 (3.5.46)

(m)
as the governing differential equations for q_ . The boundary condition

(3.5.3 7) and the displacement continuity condition (3.5.3 9) remain unchanged.

The traction continuity condition (3.5.41) now becomes

(1) _._(1) n2 (1) 5 (1) = C4(24)___{2)+ Ci2) _ (3.5.47)
C 44 _x2 + C66 _x 3 n3 _x 2 _x 3
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3.5.2 Elementary Solutions for Fibrous Materials

We consider some simple cases in which the problem of the fibrous

cylinder of arbitrary transverse geometry, subjected to homogeneous bound-

ary conditions, can be solved in elementary fashion.

Suppose that the two phases are isotropic and have equal Poisson's ratios

_I = _2 = v (3.5.48)

while

E1 _E2 (3.5.49)

Ifthe cylinder is macroscopically transversely isotropfc or square

symmetric it follows at once from (3.5. 118)and the general relations (3.4.117)

and (3.4.119) that

..............

I EA =El V l +E2 v2
I.

(3.5.5o)

'_A v (3.5.5 i)

It is also easily realized that since the relations (3.4.117), (3.4. 118) are

valid for transversely isotropic phases with parallel matertal axes of

symmetry in cylinder axis direction, the results remain valid if the Poisson's

ratios in (3.5.48) are replaced by axial phase Poisson's ratios while all other

phase elastic properties remain distinct. The result (3.5.50) is of utmost

importance as it will be shown later that it is an excellent approximation

for E A of any FM or FRM.
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We shall now show that under homogeneous boundary conditions appro-

priate for effective axial Young's modulus determination, the results (3.5.50 - 51)

remain valid for more general fibrous cylinders and the internal stress and

strain fields can also easily be obtained. Let a fibrous two phase cylinder

be subjected to the boundary conditions

detail for the cylinder are

0

_Ii _iI' <_12 _13 0

(3.4.28) which when written out in

x I = o,H (3.5.52)

TI=0

T2 = °22 n2 + 023 n3 = 0 on Sc

T3 = _23 n2 + _33 n3 = 0

(3.5.53)

It is seen that (3.5.53)are a special case of (3.5.21). Therefore,

if the phases are isotropic or transversely isotropic the par. 3.5.1 formulation

of plane strain with uniform axial strain applies. Consequently

o xl (3.s 54)u I (x) = _ ii

in both phases, at sufficient distance from the terminal sections of the

O
cylinder. The uniform axial strain ¢

ii
is at present unknown.

The displacements u 2 and u 3 are guessed to be

O

u2 (x) =- V_ll x2

(3.5.55)

0

u 3 (x) =-V_-llX3



132

in both phases. Then the strains associated with (3.5.54 - 55) are

O
¢__ =

1] II

O

e22 = ¢33 = - _ e 11 (3.5.56)

¢12 = ¢23 = e31 = 0

It follows by Hooke's law that the stresses are

°( = E1 _ Ii o Ii 1

(3.5.57)

022 = 033 = o12 = o23 = o31 = 0 (b)

where E 1 and E2 are axial Young's moduli for transversely tsotropic phases

and are the usual Young's m0duli for isotropic phases.

To verify the solution it is noted that (3.5.55) trivially satisfy the

phase differential equations (3.5.14) and interface continuity (3.5.15). It

is also seen in view of (3.5.17) and and (3.5.57) that the interface tractions

vanish and thus interface traction continuity (3.5.18) is also trivially satisfied.

O
The unknown strain

ii is determined by the condition (3.5.22) with

(3.5.57). This leads to

O
O

o 11

11 = E1 Vl+E 2v2 (3.5.58)
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and so the denominator of (3 ;5.58) is recognized as the effective axial Young's

modulus, in accordance with (3.5.50). Furthermore, since it has been verified

that (3.5.55) are the actual uniform strains in both phases it follows that

is the effective axial Poisson's ratio, in accordance with (3.5.51).

It should be noted that the solution is subject to the further Saint

Venant restriction (3.5.23) which in view of (3.5.57a) assumes the form

E1 /x2dA+E2/x2 dA=o

A 1 A 2

E1 / x3 dA+E2/ x3dA= 0

A 1 A 2

(3.5.5 9)

Since E 1 and E2 are arbitrary the integrals in (3.5.59) must vanish separately.

This is the case if the geometry is symmetric with respect to the x 2 , x 3 axes

and also, in the limit, ifthe geometry is statistically homogeneous.

Note that it was not necessary to assume any specific macroscopic

symmetry of the fibrous cylinder. Consequently (3.5.50 - 51) are valid for

any statistically homogeneous fibrous cylinderelf (3.5.59) is satisfied.

The solution is easily generalized to the case of any number N of

cylindrical phases which all have equal Poisson's ratios in which case

rn=N

E A = Em vm =

m=l

(a)

= v (b)
A

O
E

(m) _ 11 m (c)
(Jll *

E
A

(3.5.60)
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The solution may also be generalized in another way. Suppose that the

phases are orthotropic with a common orthotropy axis x I. Let the phase

Young's moduli in x I direction be E_I)- , E_2)- and the associated Poisson's

ratios v (I) . (2) and (I) (2) where superscripts now denote the
12 ' v 12 v13 ' _ 13

phases. If

,a (1) = ,a (2)
12 = '_1212

(1% (?_

v13': Vl" 3 :v13

Then it Iollo_s easily that

. I?lE 1 = E v 1 +E v 2

(3.5.61)

= v12

13 13

It is also of some interest to note that if one phase, 2 say, is empty

that is consists of parallel cylindrical voids, then it is

_12' '_13' VA Vl

El, EA = E1 Vl

This is easily proved by retracement of previous ana lysis.

Another special situation which can be analyzed is the case of

transversely isotropic phases in which

£1 _2 = "6 (3.5.64)

rigorously true that

(3.5.63)

v (3.5.62)
12
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which for isotropic

t 1 = k2 = k

phases assumes the form

(3.5.6s)

It follows from the general relations (3.4. 112) and (3.5.64) that

(3.5.66)

* B

n = n I v I + n 2 v 2 = n
(3.5.67)

It is easily shown by direct analysis through application of the

boundary conditions (3.4.57) that the stresses in the phases are

111 o (2) oo = nl ¢Ii °ii =_'2 ¢ii

0

_22 = _33 _ ii

(3.5.6 8)

and that (3.5.66 - 68) are valid for any statistically homogeneous fibrous

cylinder as long as (3.5.64) is fulfilled. The results are also easily

generalized to any number of phases in obvious fashion.

If the phases are orthotropic and

112)_ (2)O = t,12 = C12

(3.5.69)

C(1) c:_"= c
13 = 14 13

all other phase moduli being distinct, then

* (i)vl + C (2)v2CII = CII ii

c = c (3.s.70)
12 12

C 13 = C13
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3.5.3 Composite Cylinder Assemblages

The composite cylinder assemblage model for uniaxially FRM has been

described in chapter 2.1, fig. 2.i.3. IA/e shall here be concerned with the

computation of EEM for this model.

The inner cylinders are assigned the role of fibers and their material

is labeled 2. The remaining material is the matrix which is labeled i. If

the phase materials are transversely isotropic about an axis in fiber direction,

the assemblage is macroscopically transversely isotropic as will be explained

later on. There is thus a basic set of five different EEM. However, only

three are independent because of the general relations (3.4.11Z) and (3.4. 117 - 118).

The fundamental importance of the present model is in that four EEM

can be exactly calculated in terms of simple closed form expressions. A fifth

EEM is bounded from below and above; however, recent work indicates that

the upper bound may actually be the correct result.

Most of the results which will be here obtained were first given by

Hashin and Rosen [3.10] where this model was introduced. A related model

is that of a composite sphere assemblage introduced previously by Hashin [3.11]

for isotropic composites. The method of analysis to be here employed is dif-

ferent and much simpler than the one used in [3.10].

e

We consider first the calculation of the transverse bulk modulus k .

The homogeneous displacement boundary conditions to be applied to the surface

of a fiber reinforced cylinder are in this case given by (3.4.59).
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Consider first a single composite cylinder subjected to (3.4.59). The

inner circular cylindrical fiber is of radius a and the outer cylindrical matrix

shell has radius b, fig. 3.5.1. Using cylindrical coordinates the boundary

displacements (3.4.59) transform into

uI (S) = Uz (b,e,z) = 0 (a)

u (b,8,z) = 0 (b) (3.5.71)

(i) eou (b,B,z) = b (c)
r

In view of (3.5.71a) the cylinder is in plane strain and moreover the cylinder

is in an axially symmetric state because of (3.5.71b). Consequently, we have

(1) (2) (i) (2)
Uz =u z =u 8 =u 0 =0 (a)

(3.5.72)

u (I) = u (I) (r) u (2) = u(2)(r) (b)
r r

throughout the cylinder. As is well known

u = Br + C/r

= 2kB- 2GC/ 
IT

o0O = 2kB + 2GC/r 2

(a)

(b)

(c)- (3.5.73)

o =2,_B
ZZ

(d)

°rz = Ore = O0z 0 (e)
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for the axially symmetric cylinder in plane strain (see e.g. [3.6] ). There.

are here two different solutions, for fiber and matrix. In view of the first

transverse isotropy - isotropy analogy of par. 3.5.1 k and G in (3.5.73)

may be interpreted as transverse bulk and shear modulus respectively, of a

transversely isotropic material, or as their isotropic counterparts for an

isotropic material.

It is seen that in the fiber

displacement and stress at the center.

u (1) = Blr + CI_

B1 - 2G1C1/r 2o 2k 1rr

zz(1)--2

C must vanish in order to avoid infinite

Thus we may write

(a)

0o)

B 1 (c)

(3.5.74)

u(2) = B2r (a)

_(2)rr = 2 k 2 B2 (b) (3.5.75)

(2)
Crzz = 2 ,_2 B2 (c)

In view of (3.5.72) displacement continuity at fiber-matrix interface,

r = a, requires only

(1) (2)
u (a) = u (a)

Because of the axial symmetry _rO °rz

traction continuity at r = a reduces to

(3.5.76)

= 0 throughout the cylinder and thus
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_(i) (a) = _ (2) (a) (3.5.77)
rr IT

Insertion of (3,5.74 - 75) into (3.5.71c) and (3.5.76 - 77) yields three linear

equations for the constants B I, C 1 and B2. For future use we record the

value of B2 which is given by

k I + G 1

B2=
k2 + G 1 - (k2-kl)(a/b) 2

O
¢ (3.5.78)

For reasons which will become apparent we are at present interested

only in the tractions on the composite cylinder surface. Because of (3.5.73e)

the only surviving traction components are T = _ on r = b and T = o on
r rr z z z

z = o, H, the terminal sections.

It follows from (3.5.74b) and the computed values of B 1, C 1 that

g(1) (b) =2k _o (3.5.79)
rr C

where

kl(k 2 + G1)[ 1-(a/b) 2 ] + k2 (kl+C-1)(a/b) 2
k - (3.5.80)

c (k2 +GI )[I- (a/b)2] + (kl+GI )(a/b)2

In view of (3.5.74c) and (3.5.75c), o assumes different constant values
ZZ

in the fiber and matrix shell. We compute the average of o over the cross
ZZ

section which can be written in the form

- o (3.5.81)O =2_ ¢
ZZ C

where
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"61(kz+G1) [ 1-(a/b)2 ] + _2 (kl-_l) (a/b)2

, = (3.5.82)

c (k2+G1)[l_(a/b)2 ] + (kl+G1)(a/b)2

If in the composite cylinder H >>b, then replacement of the actual

piecewise constant a stresses on the end sections by the uniform stress
ZZ

(3.5.81) will merely produce end effects because of Saint Venant's principle,

so it is henceforth assumed that (3.5.81) is the normal stress on the end

sect ions.

surface to the cartesian x I , x 2 , x 3 system. We have

cos (r,x I) =T n I =0
T1 =Tr r

O

T 2 = =Tr n2 =2kc _ n 2 r=b (3.5.83)

O

T 3 =Tr n3 =2kc e n 3

= 2 _ o ]
T 1 C L

i Z =O,H

=T 3T 2 =0

(3.5.84)

0
It is seen that (3.5.83 - 84) is a homogeneous traction system,o .. n. , on

11 ]

the cylinder surface, where

'2 _, ¢o 0 0
O

O
0 2k e 0

C

0 0 2k c
C

(3.5.85)
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"Suppose now that (3.4.59) is applied to the surface of a homogeneous

transversely is,tropic circular cylinder of radius b. The solution is most

elementary , having the form (3.5.75). We obtain in particular that

o =2k
rr o

0
(a)

(3.5.86)

o
o =2' , (b)

zz o

where k o, Lo are two of the five moduli of the homogeneous material (see

(3.4.86)). Evidently the tractions on the homogeneous cylinder surface

will be of the same form as (3 5 83 - 84), with k _c replaced by k o, _ •" " c ' o

It is thus seen that to an external observer the composite cylinder is

indistinguishable from a homogeneous cylinder with transverse bulk modulus

k and modulus _ This is also apparent from (3.5.85). Accordingly
c ¢

k and % as given by (3.5.80) and (3.5.82) may be called apparent moduli
c c

of the composite cylinder.

Dually, the composite cylinder may be subjected to the mixed boundary

conditions (3.4.62). Transformation to cylindrical coordinates again produces

an axially symmetric plane strain problem. An analysis similar to the pre-

vious one again shows that the composite cylinder has apparent moduli k and
c

£ , given by (3.5.80) and (3.5.82).
c

Consider now a homogeneous transversely is,tropic cylindrical specimen

of arbitrary cross section A with moduli k and Q If the specimen is sub-
' c c

jected to the homogeneous boundary condition (3.4.59) we know by the theorem on
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homogeneous elastic bodies of arbitrary shape, under homogeneous boundary

conditions, par. 3.2.2, that the displacements in the cylindrical specimen

are just of the form (3.4.59), that is

O O

u 1 (x) = 0 u 2 (x) = , x 2 u 3 (x) = _ x 3 (3.5.87)

Consequently the strains are given by

['ij] = 0
I

_0

-0 0 O"

0
_. 0

0
0 ¢

and the stresses are found from Hookes' law for homogeneous transversely

isotropic bodies (3.4.86) to be precisely (3.5.85).

Now consider any circular cylinder, of radius b, within the cylindrical

specimen extending from base to base and with axis parallel to the specimen

axis. Let the center of the circular cylinder be at the point x_m), x_m) in the

transverse plane. Introduce a local coordinate system y(_ defined by

(m) + Y2x 2 = x 2

(m) + Y3x 3 = x 3

(3.5.88)

(fig. 3.5.2). The displacements on the curved surface r = b are in view of

(3.5.87) and (3.5.88)
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uI = 0 (a)

o (m) o

u2 (b) = ¢ x 2 + ¢ Y2 (b)

o (m) o
u 3 (b)= e x 3 + ' Y3 (c)

(3.5.89)

It is seen that the first parts of the right sides of (3.5.89b,c)are rigid body

motions of the circular cylinder, thus producing no stresses and strains.

The remaining parts of (3.5.89) are referred to the circular cylinders local

coordinate system and thus are equivalent to (3.5.71). Furthermore, since

the stresses throughout the cylindrical specimen are (3.5.85)

on the circular cylinder's surface are given by (3.5.83 - 84).

is that if the circular cylinder is replaced by the ccrnposite cylinder whose

apparent moduli are k and £ the cylindrical specimen will not Know the
C C

difference since the displacements and tractions on the surface enclosing

the replaced cylinder have been preserved. Thus the states of strain and

stress in the remainder of the cylindrical specimen are not affected by

the replacement.

Consequently, such replacements can be performed again and again,

starting with composite cylinders of relatively large radii and filling the

remaining volume with smaller and smaller composite cylinders. In order

to preserve the same k and 4 in all cylinders we require that all quantities
C C

in (3.5.80) and (3.5.82) be the same in all composite cylinders. Thus, in

particular, the ratio a/b is the same and the composite cylinders are

the tractions

The conclusion
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all geometrically similar. In the limit the whole volume of the cylindrical

specimen is filled out with composite cylinders and thus becomesa composite

cylinder assemblage, Fig. 2.1.3.

fraction of the fibers, thus

Evidently (a/b) 2 is now the phase volume

(a/b) 2 = v z (a)

l-(a/b) 2 = v I (b)

(3.5.90)

and k as given by (3.5.80) becomes the effective transverse bulk modulus
C

k of the composite cylinder assemblage, In view of (3.5.90) it may be

written in the equivalent forms

. kl(k 2 +G 1) v 1 + k 2 (k 1 +G 1) v 2
k =

(k 2 +G1)v 1 + (kl+G 1) v 2

v 2

k = kl + 1 Vl
+

k2-k 1 kl+G 1

(a)

(b)

(3.5.91)

Similarly, (3.5.82) becomes _ of the composite cylinder assemblage.

By use of (3.5.90) it may be written in the form

* _1 (k2 +G1) Vl + Z2 (kl+G1) v2 !i
= J

(k2+Gl)Vl + (kl +G_v2 1

(3.5.92)
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It is recalled that k

general relation (3.4.112a).

satisfy this relation.

and _ of a FRM must be connected by the

It may indeed be verified that (3.5.91 - 92)

It is recalled that (3.5.91 - 92) are results for transversely isotropic

phases, with G interpreted as G T. For isotropic phases _ becomes ),

while k and G are plane strain bulk modulus and isotropic shear modulus,

respectively.

The analysis of k and ; may even be carried out for hollow or

composite fibers. Suppose that all fibers have concentric cylindrical

circular voids. If 'a' is a typical fiber radius let a be the radius of the
o

void. Suppose that the ratio a /a is the same in all fibers. Denote
O

(a^/a) 2 = v (3.5.93)
u, O

where v is the volume fraction of voids relative to fiber volume. We
O

know from previous analysis that also the hollow fiber behaves to an

external observer as a homogeneous fiber with some apparent transverse

i I

bulk modulus k2 . To find k 2 it is merely necessary to reinterpret (3.5.80) for

the hollow fiber in the following way: k2 becomes an elastic modulus _f the

void and it therefore vanishes, k I, G 1 become the fiber elastic moduli and

(a/b) 2 is replaced by (3.5.93). Thus

- )
k'2= k2 G 2 (i v ° (3.5.94)

G 2 + v° k2
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Then the transverse bulk modulus for the composite hollow cylinder assemblage

becomes

!

, .k I 0_ +G I) v I + k 2 (kI + G I) v 2
k = (3.5.95)

1)vl+(k I+G l)vz

where v 2 is the gross volume fraction of hollow fibers relative to the composite.

Next we consider the axial Young's modulus E A and the axial Poisson's

ratio v . These elastic properties can be obtained in a similar way by
A

subjecting a single composite cylinder to axial extension without load on

its lateral boundary, obtaining the apparent axial Young's modulus and

Poisson's ratio of the composite cylinder, and then filling out an arbitrary

cylindrical specimen with composite cylinders to obtain an assemblage.

Such a procedure has indeed been originallF adopted in L3, i0 ] but fortunately

this is no longer necessary for the general relations (3.4.117) and (3.4. i18)

now permit calculation of E A and "JA directly in terms of k . The results

are

. 4 (_2-Vl)2Vl v 2

E A=E 1 v 1 +E 2 v 2 +Vl/k 2 +v2/k 1 + 1/G 1

v A = v I v I + v2 v2 +

(v2-Vl) (i/kl-i/k _) v I v 2

vl/k 2 + vz/k I + I/G 1

(3.5.96)

(3.5.97)

The effective moduli E A and v A were first obtained in [3.10 ] in very

complicated form. The much simpler forms (3.5.96 - 97) were later given by
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Hill [3.5] as "effective moduli" of a single composite cylinder.

In view of the equs. (i), (2) in the appendix to par. 3.5.1 it is

seen that in the case of transversely isotropic phases E, _, k, G in

(3.5.96 - 97) are to be interpreted as axial Young's modulus EA, axial

Poisson's ratio _) , transverse bulk modulus k and transverse shear
A

modulus G T, respectively. For isotropic phases they are the usual

elastic moduli.

For hollow fibers E 2, v2 and k2 in (3.5.95 - 96) are replaced by the

corresponding apparent elastic constants of the hollow fibers. These apparent

constants may be directly found from (3.5.96 - 97) by letting the fiber

moduli vanish in these expressions and replacing the matrix moduli by

fiber (2) moduli. We then find

P2 = E20-Vo) (a)

(3.5.98)

_'2 = _2 (b)

Introduction of (3.5.98) into (3.5.96 - 97) instead of E 2, v2 and (3.5.94)

W W

instead of k 2 yields the hollow fiber expressions for E A and VA"

It should be noted that instead of hollow fibers it is just as simple to

consider fibers which are themselves composite concentric cylinders. This

may be of some interest for boron fibers which consist of a tungsten core

on which the boron is vapor deposited. In this case the primed moduli (3.5.94)

and (3.5.98) merely have to be replaced by the equivalent moduli of the

composite fiber, which are again easily obtained from previous expressions

of equivalent moduli of a composite cylinder.
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Evidently, n of a composite cylinder assemblage may now also be

computed by use of the relation (3.4. l12b). For transversely isotropic

phases this modulus is given by

!..................................

' * -  2)2vIv2

n = n 1 v 1 + n 2 v 2 - klV2 + k2Vl+GT1
(3.5.99)

where the phase moduliare defined by (3.4.86). For isotropic phases _I,£ ,

k and G in (3.5.99) are given by (3° 4_ 89).
Z

We now consider the axial shear modulus G A of a composite cylinder

assemblage. The method is in principle the same as for k calculation.

The boundary conditions (3.4. i0) may be applied to the surface of the

cylindrical fiber reinforced specimen and consequently we consider the

problem of a single composite cylinder subjected to (3.4.10). The general

axial shearing formulation given in par. 3.5.1 is immediately applicable to

O O
the present case, with e = O. We set for convenience ¢ = c_ . The

13 12

problem then becomes

v2%0 (1) = 0 a <r _b (a)

V2_ (2). = 0 0 <r < a (b)

(3.5. loo)

(i)
= 2_x 2 r = b (a)

(1) (2)
=_

r=a

_n

(b)

(c)

(3.5. i0 i)
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Evidently the problem (3.5.100 - 101) should be transformed to polar

coordinates r, S given by

x 2 = r cos 0

x 3 = r sin E)

In terms of these (compare e.g. [3.9] ) the harmonic problem (3.5.99 - 101)

becomes

_2 (i) i _ (i) i _2 (i)

r2 r b r r2 _ 82

52 (2) i _(2) i _2 (2)
+ +__ %o

r2 r _ r r2 B 82

=0 a <r<b (a)

=0 0 Sr_a (b)

(3.5. i02)

(i)
(b, 8) = 2abcos 0 (3.5. 103)

(i) (2)
_p (a,o)= _o (a,O) (a)

2_ (i)(a,e) B_(2)(a,o)
G:I _ r = G2 _r

(3.5. i04)

Solution of this problem is readily obtained by separation of variables or adap-

Lion of the general harmonic solution in polar coordinates in circular annular

domains (compare [3.9]) to the present problem. The results are

(i)
(r,8) = (B1 r + Cl/r) cos 8 (a)

(2)
q (r,8) = B2 r cos 8 (b)

(3.5.ios)
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where B 1, C 1 and B 2 are arbitrary constants. Insertion of (3.5. !05) into

(3.5. 103 - 104 ) yields three linear equations for these constants, thus

completely _pecifying (3.5. 105). We record for future use the value of B2

which is given by

4aG 1

82 = (3.5 106)

G 2 +GI - (G2 - G1 )(a/b) 2

Again we are interested only in the tra_ticm_ nn 'l'h_ hn,,n_ry r = b _^r_ u..... c._-
, ....................... _ _ • vv "_. I_.lJ.'.-,,'WV .LL%.,'111

the general analysis fn par. 3.5.1 that the only surviving traction there is

T 1 which in view of (3.5.40 - 41) is G 1 _---_ i.e. G 1 5r in polar

coordinates. We then obtain on the basis of the present solution

T 1 (b,6)) = 2 GAc c_ COS 6) (3.5. 107)

where

r

GAc = G 1 ,1 + (a/b)2 i

I G I 1 i

f G2-G---T+T f

(3.5. 108)

Now suppose that
O

(3.4.10) with ¢
12

= a is applied to the surface r = b of

a homogeneous transversely isotropic circular cylinder with axial shear

modulus GAo. The simplest wayto find the solution is toappeal again to

the theorem on homogeneous elastic bodies of arbitrary shape under homo-

geneous boundary conditions. It follows that the displacements in the

cylinder are just of form (3.4.10) throughout. Consequently the strains are

everywhere
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0 a O!0 0

L 0 0 oj

and the stresses are everywhere

0 2GAo !l[oij] =iZG A a 0
L0 o 0

In view of (3.5. 109) the only surviving traction on r = b is

T1 = _12 n2 = 2GAoa cos e

since n2

(3.5. 109)

(3.s.11o)

=cos 6). Comparison of (3.5.110) with (3.5.107) shows that to an

certainly not satisfied by (3.5. i05). To assess the magnitude of the effect

involved it is best to consider the boundary tractions. It is easily shown

that the section resultant associated with (3.5. 105) is only a shear force

in x 2 direction. Thus if in the composite H >> b the actual variation of _0

on the end section may be replaced by (3.4.19a) and the end effect produced

is macroscopically insignificant.

sections of the composite cylinder.

seen that we should have _= 2ax 2

In view of (3.4.10) and (3.5.38) it is

on the terminal sections which condition is

external observer the composite cylinder is indistinguishable from a homo-

geneous transversely isotropic cylinder with axial shear modulus as given

by (3.5. 108).

There remains, however, a problem of end conditions on the terminal
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We now follow the samereasoning that led to the construction of the

composite cylinder assemblage for k calculation. A homogeneoustransversely

isotropic cylindrical specimen of arbitrary cross section is assigned the

axial shear modulus GAc. Parallel circular cylinders within the specimen

can be replaced by composite cylinders with constant a/b ratios without

affecting the stresses and strains in the remaining volume. In the limit of

filling out the specimen becomes a composite cylinder assemblage with

axial shear modulus GAc. This modulus is now denoted G A

terms of fiber and matrix volume fractions

G A = G 1 +

vZ

1 Vl
--+

G2-G 1 2G 1

GA = G1 G

G 1 v I +G Z(l +v2)

i(i +vz)+G 2v l

(a)

(b)

and becomes in

(3.5 .lii)

If the phases are transversely isotropic or even square symmetric,

G Z, G 1 in (3.5.111) are the phase axial shearmoduli. If the fibers are

hollow with void volume fractions defined by (3.5.93) , then G 2 in (3.5.11 I)

has to be replaced by

I -V

o (3.5.ii2)G½ = G 2 i + v
O
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wherev 2 is given by (3.5.93).

The axial effective shear modulus is unique in that it depends only

on the phase shear moduli and not on other phase elastic properties. This

is so even for the axial shear modulus of any fibrous material since by par.

3.5.1 only G 1 and G 2 enter into the field analysis for this case.

It is again very easy to generalize to the case of composite fibers

in the manner described above, after equ. (3.5.98).

There remains the problem of the calculation of a fifth EEM in order

to complete the analysis of the composite cylinder assemblage. In view of

(3.4.82) and (3.4.85) and the results obtained above for the composite

W W

cylinder assemblage, it is seen that any one of the group G T, ET and

can be taken as a fifth elastic constant. It turns out that of these the easiest

to consider is G T . But,unfortunately, the replacement method which has

been previously employed fails for this case since a composite cylinder has

no apparent transverse shear modulus.

It is , however, possible to find upper and lower bounds for G T on

the basis of variational methods. The discussion of such methods and the

detailed derivation of bounds is deferred to chapters 3.6, 3.7.

are here presented for the sake of completeness.

Upper and lower bounds are denoted GT (_) and G T (_)

Then for fibers (2)which are stifferthan the matrix (I) i.e. k2

The bounds

respect ively.

(*)

>kl,G 2 >G 1

(*) Bounds for the case of matrix stifferthan fibers are given in par. 3.7.4.
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GT (+) = G 1

3) v2) 2 2(I + av 2 (o+ _ - 3v 2 v_i 1 1

v2 3) 2 2(i +a (0- v2) - 3v2 Vl 1

where

"1

o
-_- 1

G 2
-y

G
1

1 1

- 92-
_l 3 - 4v 1 3 - 4 v 2

(a)

(b)

(c)

(d)

(e)

(3.5. I 13)

. v 2

GT(_) : G 1 +
1 k I + 2G 1

+ v 1
G2-G 1 2GI(kI+G I)

or equ iva 1e nt ly

. v 2

GT(_) : G 1 1 +
1 v 1

+

_{-i i+_

]

(a)

(b)

(3.5. 114
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The upper bound (3.5.1 13) has been originally derived in [3.10 ] in

terms of a parameter which had to be obtained by solution of a six by six

system of linear equations. (See par. 3.6,2) The present equivalent and

much simplified result (3.5. 115) has been obtained recently by algebraic

solution of the six by six system, [3.12].

A lower bound was also derived in L3.10]. Later, bounds for statis-

tically transversely isotropic fibrous materials of otherwise arbitrary phase

geometry were derived by Hashin [3.13 ]. Surprisingly enough it was found

that the general lower bound of [3.13 ] is always higher than the lower bound

of [3. i0] , in the case of fibers which are stiffer than the matrix. Since the

composite cylinder assemblage is a special case of the general fibrous

geometry of [3.13], the general bounds are certainly also valid for the

composite cylinder assemblage model. Therefore the lower bound of [3.13 ]

supersedes the lower bound of [3.103. Thus the bound (3.5. 114) is the

general fibrous geometry lower bound.

Recent work by Hashin and Rosen [3.12 ] indicates that the upper bound

(3.5. 113) may actually be the expression for G T of the composite cylinder

assemblage model in the event that the fibers are stiffer than the matrix.

If the phases are transversely isotropic the results (3.5.113 - 114)

are still valid with the following interpretation of phase properties: G 2 , G 1

are the phase transverse shear moduli and the Poisson's ratios are replaced by

1

= -_- (I - GT/k )
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It is of some interest to specialize the results obtained so far for the

composite cylinder assemblage model to extreme cases. In the first case it

is assumed that the fibers are perfectly rigid, which means physically that

they are very much stiffer than the matrix. We thus assume that all fiber

moduli are infinitely larger than matrix moduli. We then obtain from the

previous results (3.5.91),

Rigid fibers

(3.5.96), (3.5.111) and (3.5.113)

. v 2

= _i + (kl+ Ol) i - vz (a)

E A _ E 2 v 2 (b) (3.5.115)

. 1 +v 2

G A = G 1 1 - v 2 (c)

2 2

v_./_2 , (1-v23 ) (1+_ lV2)-3v 2 v 1%1

G 1 [I + (i + SI) Vl ] < GT _GI 2
(l-v23)(1-v 2) -3v 2 v} _1

(d)

Note that (3.5. l15b) becomes infinite for rigid fibers. This result implies

that for very stiff fibers (3.5. l15b) is a very accurate approximation of (3.5.96).

The modulus _ and v A are not meaningful for rigid fibers since v2 remains

in the expressions and for a rigid material _2 is indeterminate.

The second extreme case is that of cylindrical parallel voids. This is

obtained from previous results by letting fiber moduli be infinitely smaller

than matrix moduli. We then have:
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Cylindrical voids

. k I GI (l-v 2)
k = (a)

G 1 + k I v 2

GI(I- )* i v2
= (b)

G I + k I v2

E A =E l (l-v 2) (c) (3.5.116)

A _i (d)

. 1 - v2
G : G (e)

A 1 1 +v 2

Note that (3.5.116c,d) are merely special cases of the general results (3.5.61).

The bounds (3.5.1i3 - ii4) are not valid in the present case. Bounds

for matrix which is stiffer than the fibers, which situation includes cylindrical

voids as a special case will be given later, par. 3.7.4.

The third extreme case to be considered is that of incompressible

isotropic matrix in which case

1

Vl = T (a)

1 _,:o (b),k I

(3.5. 117)
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where (3.5.117b) follows from (3.4.89 - 91). It should be noted that great

care has to be exercised in the use of (3.5.117b) in (3.5.91 - 92) and (3.5.96 - 97)

for the meaning of (3.5.117b) is really that £i' kl become very large. It may

be safely assumed that they are much larger than G 1 but it is questionable

whether they become much larger than fiber moduli in the event that the fibers

are much stiffer than the matrix. Since the last case is of most practical

interest it is preferable not to simplify (3.5.91 - 92)and (3.5.96 - 97)

uy u_ ul _o.5.11/j.

It is noted that no Poisson's ratios appear in the G A expression

(3.5.111). This, of course, is in accordance with the general axial shearing

boundary value problem formulation of par. 3.5. i, which does not involve

phase Poisson's ratios. Therefore (3.5.111) remains the same whether or

not the matrix is incompressible.

9¢

The G T bounds (3.5. 113 - 114) assume the following form for

inc ompre ssible matrix

, (l+c_vz)3 (0+v2) -3v2 Vl 2

I v2 ] _ G T < GO 1 1 + 1 v I 1 (l+_v2)3(p_vz)_3v2v12 (3.5.118)
w--i-+ -/-

It is of interest to note that the left side of (3.5. 118) is the O Aresult

(3.5.111) in different form. The significance of this, if any, is not known

to the writer.
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For rigid fibers and incompressible matrix, (3.5. 118) reduces to

v , 1 -v 2 + 5v22+v23

G1 (1 +2 -_1 ) _G T < G 1 (1 - v2) 3

(3.5. 119)

To obtain results for E T and v T we exploit the relations (3.4.82 - 84).

It is seen that for the composite cylinder assemblage all EEM entering into

the right sides of these expressions are known in closed form, except for

G
T

which is bounded. It is easily shown that in terms of G T bounds we have

. 4k G
4k GT(_) < E < T(+)

* * T * *
k +mGT(_) k +mGT(+)

. k -mGT (_)k-mGT(+) < v <

k +mGT(+) k +mGT(_)

(a)

(b)

If it is accepted that G
T (+)

is the actual expression for G
T

. . _ 4k GT(+)

E T = ET(+) * *

k +mG T (+)

(3.5. 120)

then

. . k -mGT (-)

_T = _;T =(-) * .
k +raG T (+)
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We now re-examine the statement made at the beginning of this para-

graph that a composite cylinder assemblage with transversely isotropic phases

is macroscopically transversely isotropic. Indeed it has been seen that four

EEM of a composite cylinder assemblage are just the apparent moduli of a

single composite cylinder. A single composite cylinder is obviously trans-

versely isotropic because of its axial symmetry. This argument cannot be

applied to G T. However, it is clear that because of the geometry involved

the value of G T cannot depend upon the orientation of x 2, x 3 axes with

respect to which the analysis is performed. Consequently the composite

cylinder assemblage is transversely isotropic.

The reader will recall that it has been emphasized in chap. 3.3 that

EEM depend in general on all the details of the phase geometry and not just

on the volume fractions. It is seen, however, that in spite of the complex

geometry of the composite cylinder assemblage, the volume fractions are its

only geometrical parameters which enter into the EEM expressions. This is a

rather special and fortunate situation which is a result of premeditated con-

struction of the model in such manner that its EEM are the equivalent moduli

of one single composite cylinder. Consequently, the results are so

surpris ingly simple.

The present results for EEM of the composite cylinder assemblage model

will be referred to very frequently in Lhe remainder of this work. They shall then

be identified by an additional subscript c, thus k , G
c Ac' EAc, etc.
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Finally, it should be pointed out that the stress and strain fields in

the composite cylinder assemblage are just the stresses and strains in the

composite cylinders, which are known by previous analysis for those boundary
* W W *

conditions which lead to closed expressions for EEM, i.e. k, n , _ and E A.

For those boundary conditions which lead to G T and E T the stresses and

strains are not known, unless it is acceNed that (3.5. 113) is the actual

result for G
T

in which case the stresses and strains are also known in those

cases. Results for internal stresses are given in appendix 2.

Some numerical examples will now be given. Table 3.5.1 lists some

elastic properties of various fiber and matrix materials. These should not

be taken too literally. In particular, different epoxies have significantly

different Young's moduli which range between about 0.3 - 0.6 x 106 psi.

Tables 3.5.2-4 contain effective elastic properties of various fiber

reinforced materials which have been computed on the basis of composite

cylinder assemblage (CCA) theory, using the properties listed in table 3.5.1.

The effective properties G T (+), E T (+) and v T (_)
have been underlined as

these may be the actual results for the composite cylinder assemblage model.

Figs. 3.5.3 - 3.5.8 show various plots of effective elastic properties

and also comparisons with experimental results. It is seen that EA shown in

fig. 3.5.3 varies to all practical considerations linearly with v 2. This is due

to the fact that the third term in (3.5.96) is numerically insignificant in

W

comparison to the first two terms. Accordingly E A is excellently approximated

by (3.5.50). It will be shown in chaps. 3.6.-7 that this is true for any

fibrous ge ometry.
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Fig. 3.5.4 shows _A' (3.5.97) which is represented bya very flat

curve which can be approximated with fair accuracy by a straight line. It

will be seen in .chap. 3.7 that this feature of
A

is also common to general

fibrous materials.

Fig. 3.5.5 shows G Avariation as given by (3.5.111), together

with experimental results from [3.14] . It is seen that the experimental

results tend to be above the predicted values . It will be shown in chap. 3.7

that (3.5.111) is also a lower bound for G A of a material of any fibrous

geometry. This, at least, is certainly verified by fig. 3.5.5.

Figs. 3.5.6-7 show bounds for E which were computed by use of
T

(3.5. 120), and also experimental results. It is seen that there is very good

agreement between theory and experiment. The experimental results in

fig. 3.5.7 definitely tend to favor the upper bound which may lend additional

credence to the previously stated conjecture that E

W

for E of the OOA model.
T

9¢

Fig. 3.5.8 shows v bounds.
T

by a full curve since it is the actual result if G

re sult.

T (+)
is the actual result

The lower bound has been emphasized

T(+) (thus ET(+) is the actual

For additional numerical results for effective elastic properties the

reader is referred to _. 17 - 19] .
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3.5.4 Dilute Reinforcement

The problem to be considered here is that of uniaxially FRM when the

volume fraction of fibers is very small. We denote the fiber volume fraction

v 2 by c and assume that

2
c < <c << 1 (3.5.121)

It should be realized at the outset that the case is not one of practical

interest since in FRM fiber volume fractions are generally of the order of

40 - 70%. However, the case is of importance as a check on expressions

for any fiber volume fractions and also the method used has its applications

in other cases as will be seen later, chap. 3.8.

The crucial assumption which makes analysis possible is that the fibers

do not interact. Mathematicallythfs assumption can be expressed in the

following manner: Suppose that a dihtely reinforced cylindrical specimen

is subjected to homogeneous displacement or traction boundary conditions.

Then the state of stress and strain in any fiber can be computed with sufficient

accuracy from the problem of a homogeneous cylindrical specimen containing

one single fiber, when the cross section dimensions are infinitely larger

than the fiber cross section dimensions.

Suppose that the fibers are circular, with equal or unequal radii. We

start with analysis of the effective bulk modulus k when the composite is

transversely isotropic or square symmetric. Without loss of generality we

may consider a cylindrical specimen of circular section with radius R,
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in which a circular fiber of radius 'a' is embedded concentrically.

hypot he s is

a<<R

By

(3.5.122)

The boundary conditions are (3.5.59) at r =R and we realize that such a

problem has already been solved in par. 3.5.3 for the more general case

when the outer radius is not large with respect to a.

We now recall the result (3.4. 123) and we realize that for k

calculation it is only necessary to know ¢(2)in the fibers. In cylindrical

coordinates and plane strain axial symmetry

du (2) u (2)
(2) 1 r r

(2)= i (e(2)+ c ) = (-- +--)
2 rr 88 -2- dr r

Introducing (3.5.75a) into the last expression we have

(2)
= B2 (3.5.123)

Now B2 is given by (3.5.78) for any ratio between inner and outer radii. In

the present case, because of (3.5.12 1),the quantity (a/R) 2 can be neglected in

the denominator of (3.5.78). We then have in view of (3.5. 123)

(2) kl + G1 o

¢ - k2 + G1 ¢ (3.5. 124)

- (2)
Since by (3.5.124) ¢(2) is a constant in any fiber, its average ¢ over all

fibers is also given by (3.5. 120).

, kl+G I

k = kI + (k2 - kl) k2+Gl

Inserting the result into (3.4. 123) we find

c (3.5. 125)



165

The result (3.5. 125) can also be directly obtained from the composite

.
cylinder assemblage result for k given by (3.5.91).' If in the latter

we set

v 2 =c

v 1 = 1-c

(3.5. 126)

and expand the resulting expression as a power series in c, it is seen that

. kl+G 1

k = k I + (k 2 - k I) c + .... (3.5. 127)
k 2 +G 1

Now if c is as small as required by (3.5. l16),all terms with c powers higher

.
than l can be neglected in (3.5.127) and k reduces to (3.5.125). It should

however be noted that (3.5. 125) is more general than a composite cylinder

assemblage result since in Drder to derive it the special geometrical construc-

tion by which a composite cylinder assemblage is obtained was not necessary.

It was only necessary to assume that there is no fiber interaction and therefore

(3.5. 125) is valid for any sufficiently dilute fiber arrangement (as long as it

can be assumed to have the required macroscopic symmetry). Thus (3.5. 125)

is also valid for dilute reinforcement by circular fibers of equal cross sections

and would in particular also apply to the cases of periodic hexagonal and

square arrays.

Next we consider EA and VA " These can most easily be obtained

in the following manner: Since the composite cylinder assemblage results

(3.5.96 - 97) were obtained only from k as given by (3.5.91), and since we
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now know that for dilute reinforcement k can be obtained by truncation of

the c powerexpansion of k after two terms, it follows that EA and VA for

dilute reinforcement can be similarly obtained by retention of the first two

terms in thei_ c power expansions. The results are

* 4k2Gl (_2-Vl)2
= ] c (3.5. 128)

E A E 1 + [E 2 -E 1 + k2 + G 1

, k2 k 1+G 1
. . o . ±_ C/J_ = _J + r_ - _'1 ) " -- "k +G c (3.5
A 1 '2 kl 2 1

The method used to obtain k for dilute reinforcement is directly

applicable to obtain G A for the same case. We use the general result (3.4. 124)

and the axial shear composite cylinder solution obtained in par. 3.5.4 for the

(2) in the fiber, is given by
case of very small inner radius. It is seen that e 12

the first of (3.5.33c). Now _0(2) in the fiber as given by (3.5.105b) can be

written

(2)
= B2 x 2

T he refore

(2) _ 1
12 - 2- B2 (3.5. 130)

For very small a/b (or a/R), B2 as given by (3.5. 106) reduces to a constant and

thus the average ¢(2_ is also given by (3.5.130. Thus we have from (3.4.124)

. G 2 -G 1

G A=G 1 (1 +2 G2+G 1 c ) (3.5.131)
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Again this result is directly obtainable from G A as given by (3.5. iii)

if (3.5. 126) and (3.5. 120) are used in these expressions.

An expression for the transverse shear modulus G
T

in the case of

dilute circular reinforcement can be similarly derived. We can introduce (3.5. 120),

(3.5.126) into (3.5.111 - 114)and it is not difficult to show that they coincide

to give

2(kI+G1)

G T =G I + (G2 - GI) kI+(kI+2GI)G2/GI c (3.5. 132)

Alternatively, we may consider a circular cylinder of radius R in which

there is embedded concentrically a fiber of radius a, when R is much larger

thana. The cylinder's external surface is subjected to the transverse shearing

boundary conditions (3.4.13) and it is seen that this elasticity problem falls

into the general category of the first kind of boundary value problem discussed

in par. 3.5.1.

The problem may be solved in closed form, and it is found that the

(2)which is given by (*)
only nonvanishing strain in the fiber is a uniform _ 23

(2) 2 (kl+G I) o
¢ - ¢ (3.5. 133)

23 k I+(kl+2G1)G2/G 1 23

(*) The result (3.5. 133) can be obtained on the basis of a solution for a

composite cylinder under transverse shearing displacement boundary conditions

which is given in par. 3.6.4, by specializing the solution to the case b > >a.

Alternatively, (3.5. 133) may be obtained by plane strain version of methods

given in [3.20]. See also [3.21].
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(2) is uniform in any fiber it is also equal to -(2) Thus (3 5 133)
Since _23 _23 " " "

- (2) in the general result (3 4 125) When this is donemay be used for e 23 " " " '
g¢

(3.5. 132) is G T for any sufficiently dilute reinforcement of circular fibers.

By the transverse isotropy -- isotropy analogies (par. 3.5.1), all the

dilute reinforcement results obtained are also valid for transversely isotropic

phases, the interpretation of phase moduli being just as in the case of

composite cylinder assemblages. To recapitulate, k becomes the phase

transverse bulk modulus in all expressions, G becomes the phase axial shear

modulus in (3.5. 131) and the transverse shear modulus in all others, and

E and _ become axial phase Young's modulus and Poisson's ratio, respectively.

This completes the analysis of effective elastic properties of trans-

versely isotropic materials with dilute reinforcement of circular fibers. It

should be noted that for a square symmetric material (3.5. 132) represents the

!

transverse shear modulus G T' (3.4.56),and an additional related calculation

is necessary to find the other transverse shear modulus. It should also be

mentioned that all of the dilute reinforcement results can be obtained by use

of proper homogeneous traction boundary conditions instead of the more con-

venient homogeneous displacement boundary conditions which have been

employed.

Dilute reinforcement results can also be obtained for elliptical fibers

since the necessary boundary value problem for one elliptical fiber in an

infinite matrix can be solved. It is known that under homogeneous boundary

conditions at infinity the strains in the elliptical fiber are uniform. Thus
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all the results would have the same general form as for circular fibers, i.e.

M = MI(1 +AMC) (3.5. 134)

where M is some effective modulus, M 1 its matrix counterpart and A M is

some number depending upon phase properties and ellipse geometry (ratio

between minor and major axes).

It should be noted that the orientation of the ellipses would specify

the macroscopic symmetry of the FRM. Thus if all fiber sections are identical,

equal orientation of all ellipses would produce an orthotropic material, while

random orientation would produce a transversely isotropic material. Although

the analysis for elliptical fibers is a relatively straightforward affair, the

writer is not aware of such results in the literature.

As is seen from the results obtained, all dilute reinforcement results

depend only upon phase properties and phase volume fractions. The reason

for this is the basic assumption of non-interaction between the fibers which

implies that for any fiber placement the states of stress and strain in the

fibers do not depend upon their position.

An important interpretation of the dilute reinforcement results is as

follows. Suppose that in a FRM the fibers are all circular with volume fraction c

which is not small. Let M be any effective modulus. Presumably such a

modulus could be expanded in a power series in c, thus

* 2

M = M 1 (i +AlC +A2c + ... ) (3.5.135)
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The value of A 1 is now known from the previous results and it is seen

that it is geometry independent. However, the other coefficients in the ex-

pansion are in general geometry dependent. (An exception are the composite

cylinder assemblage results of par. 3.5.4). Yet, it is seen that for all

different fiber placements the results for dilute reinforcement reduce to one

and the same expression.

It is also seen that the coefficientA 1 in (3.5. 131) can be interpreted as

_ 1 dM [

A1 M1 dc [ c=0

W

thus giving the slope of the I%4 versus c curve at the origin.

Recently Chow and Hermans [3.46] have attempted to compute the

second coefficient, A 2 in the expansion (3.5. 135) for EEM of unixial FRM

with circular fibers, by a method of "reflection. °'

It should be emphasized that, unlike AI, the coefficient A 2 will in

general depend on the detailed arrangement of circular fibers, while in

the analysis given in [3.46] it depends only on the volume fractions.

If the A 2 computed in [3.46J were indeed rigorous universal results

they would have to be the same as the A 2 found by expansion of the rigorous

composite cylinder assemblage EEM, which were given in par. 3.5.3, as

power series in v2 = c.
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Comparison of the two sets of A2 shows no agreement whatsoever,

the A 2 predicted in [3.46] being very much smaller than the ones obtained

from the composite cylinder assemblage expressions. It is therefore

concluded that the A 2 obtained in [3.46] are not of universal validity and

it would appear that the results should be considered as approximations.

3.5.5 Numerical Analysis

Numerical analysis of internal fields in FRM is carried out by

numerical solution of the elasticity equations, subject to appropriate

boundary conditions, with the aid of electronic computers. Such analyses

have mostly been limited to the cases of periodic rectangular, square and

hexagonal arrays, examples of which have been shown in figs. (2.1.4,6) .

Because of the periodic geometry it is possible to define repeating elements

in which, by symmetry, the stress and strain fields are identical. Such

elements are in the present cases the RVE of the composite.
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Appropriate repeating elements for rectangular, square and hexagonal

arrays, respectively, of identical circular fibers are shown in fig. 3.5.9 .

Similar repeating elements can, of course, be constructed when the (identical)

fibers have other shapes which must, however, be properly symmetric. For

rectangular and square arrays the fiber section must have x 2 and x 3 axes of

symmetry. For hexagonal arrays the fiber section must have three axes of

symmetry, equally spaced at 120 ° .

The boundary conditions on a repeating element are found by symmetry

considerations, as will be explained for a subsequent example. It should be

borne in mind that the analysis for a repeating element does not apply for

elements which are situated close to the bounding surface of the composite.

It is thus seen that also in the present cases there is a boundary layer

(compare: fundamental postulate of theory of elasticity of heterogeneous

media, par. 3.2.2) which can be disregarded for a body which contains a

very large number of fibers.

We consider as an illustrative example the computation of E 2 = ET

and the associated internal fields of a square array of identical circular fibers,

fig. 2.1.4. For convenience we choose a cylindrical fiber reinforced specimen

of square section with side 2D, which contains a square array of many fibers.

Appropriate cylinder boundary conditions are given by (3.4.31). In the present

case these assume the form: no shear stresses on the entire cylinder surface,

zero qll stress on cylinders terminal sections and



173

O O

a22 _.D, x 3) = 022 = o

033 (x2,+__D) = 0

(3.5. 136)

Consider now the repeating element, fig. (3.5.9b) . It is clear from

the loading and from the geometry that the repeating element is bounded by

four axes of symmetry. On such an axis of symmetry the shear stresses must

vanish and after deformation the axis remains a parallel straight line.

Consequently, the following boundary conditions are valid for any repeating

element, apart from immaterial rigid body displacements

u2, 3 + u3, 2 = 0 x 2 orx 3 = 0,d (a)

u2 (0,x3) = 0, u2 (d, x3) = 62 (b) (3.5.13 7)

u3 (x2,0)= o, u3(xz ,d)= _3 (c)

Condition (a) comes from

(i) (i)
(i)= Oi (u + )_23 2,3 u3,2

a(2) =G2 (u_2) +u(2) )23 3 3,2

which apply according to whether the boundary is composed of phase 1 (matrix)

or phase 2 (fiber). Conditions (b), (c) involve the presently unknown

constants 62 , 63 .
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In addition, the terminal sections of the repeating element are free of

load. The boundary value problem is thus of the nature of the first kind of

boundary value problem discussed in par. 3.5.1, i.e. plane strain with

axial strain. The governing differential equations are given by (3.5.14)

and the interface conditions at fiber-matrix interface by (3.5.15) and (3.5.19).

It is to be carefully noted that stresses have to be determined from (3.5.11 - 12),

which reauires determination of the 1]n_nc_wn aYia] ,qtrain p O h_r rn_mne nf
" .............................. ll -" ..........

(3.5.22) , with the left side of this equation vanishing in the present case.

It is not permissible to assume plane strain conditions, which would make

o
¢ =0.
ii

It is convenient to consider instead of (3.5. 137) the two separate

2 3
sets of boundary conditions for displacement fields u and u

c£ o.

2 2

u2,3 + u3,2 = 0 x 2 orx 3 = O,d

2 2

u 2 (0, x 3) = O, u 2 (d, x_ = 1
(3.5. 138)

2 2
u 3 (x 2, O) = O, u 3 (x 2,d) = 0

3 3

u2, 3 +u3, 2 = 0 x 2 orx 3 = O,d

3 3

u 2 (0, x 3) = O, u 2 (d, x 3) = 0 (3.5. 139)

3 ,0) = 0, 3 d) = 1
u 3 (x 2 u 3 (x 2 ,
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2 3

Otherwise, each of us, u_ must satisfy the same differential equations

interface continuity and terminal section conditions as the previously considered

u . Then by superposition the solution for boundary conditions (3.5.13 7) is
ct

given by

us (x2, x3 ) = 62 2 + (3.5 1401(x2,%) 63u3_(x2, %)

It is seen that the boundary conditions (3.5. 138 - 139) actually define

identical problems, one being obtained from the other by rotation. Thus it

follows that

2
us (x2 %) = _' a (x3' - x3)

The problem of the repeating element under boundary conditions

(3.5.138 - 139) is now solved numerically. In this respect it is mentioned

that Pickett L3.6] employed a stress formulation of such problems since

this makes it possible to use Airy stress functions and to make use of general

two dimensional solutions of plane elasticity problems. Displacements are

then expressed in form of integrals of stress function derivatives and continuity

conditions at fiber-matrix interface and boundary conditions are satisfied at a

finite set of points. Adams, Donerand Thomas [3.22]and others used a

displacement formulation and replaced the elasticity differential equations

by finite difference equations. Continuity and boundary conditions were

again pointwise satisfied.
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2 3
Oncethe displacements u and [I have been found, numerically, the

associated strains 2 3 3and ¢ and stresses 2
OC__ and _ are obtainedc_8 _B

by numerical differentiation. It follows from (3.5. 139) that the strains and

stresses in the repeating element which is subjected to (3.5. 137) are given by

¢_B = 62 2 + ceBeB % 3 (a)

3
= + (b)

(3. S. 14 i)

Since the strains and stresses in all repeating elements are the same (except

in those near the boundary) the average strains and stresses in any repeating

element are the same as in the whole fiber reinforced cylinder. By the average

stress theorem 022 and 033 are given by the right side of (3.5. 136). It thus

follows from (3.5. 141b) that

2 3
-- -- -- O

62 022 + 63 J22 = 022 = o

2 3

c33 + 63 033 = 0

(3.5. 142)

Equs. (3.5. 142) serve to determine the unknown constants 62, %

terms of the averages of the numerically known stresses in the repeating

element. The strains are now determined by (3.5.141a). The effective

Young's modulus E
T

and the effective transverse Poisson's ratio
T

are

then given by

in
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E T -

4¢

v
T

o

m

e22

m

e33
m

e22

(3.5. 143)

A somewhat simplified computation of E T may be carried out by

subjecting the square section fiber reinforced specimen to the following

boundary conditions

uI (s)=0

T 2 (S) = (Jo22 n2 (3.5. 144)

T (S)=O
3

These boundary conditions imply that the specimen is in plane strain, there

is no shear on the boundary and conditions (3.5. 136) remain valid. The

preceding description of numerical analysis remains the same in the present

case but E T and _;T are no longer given by (3.5.143). To see this we consider

the states of average stress and strain associated with (3.5. 144). Since the

specimen is in a state of plane strain it follows from the analysis in par. 3.5.1

that ¢ii = 0 throughout the specimen and so its average also vanishes.

w

Furthermore, from (3.5. 144) and the average stress theorem, _22 = o, a33 = 0.

Inserting these results into the effective strain-stress relations (3.4.78) we obtain
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0 = all - _A _22

h)

- A - 1 -
'22 - * °11 + -7-- _22

E A E T

- A - T -

_33 - * (_11 * _22
E E

A T

from which it follows that

,2
%)

=( Ae22 * _'-- 2

E A E T

,2 ,

¢33 - --_-- +
EA _T _22

(3.5. 145)

It is seen that once e22 and e33 have been determined numerically it is

necessary to know '_A and E A in order to find E T and v T Now it has

been mentioned in par. 3.5.2, and it will be later shown, that to a high

degree of accuracy

E A = E 1 v 1 + E 2 v 2

for any fiber reinforced material.

9¢

"°A "_ _l Vl + 'o2 v 2

Also, with lesser accuracy
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Since in the parenthesis in the right sides of (3.5. 145) the first terms are

much smaller than the second terms the above approximations may be used

with high accuracy.

Other EEM may be computed by related methods. For numerical

results and description of methods the reader is referred to refs. [3.63 ,

[3.22 - 243.

It is of great interest to compare numerical values of EEM as

predicted by the composite cylinder assemblage analysis and by numerical

analysis of square and hexagonal arrays of circular fibers. Table 3.5 lists

numerical results given in [3.6 ] for effective elastic properties of an

hexagonal array of identical circular fibers, fig. 2.1.6. The phase properties

represent E-Glass fibers and epoxy matrix. The hexagonal array results

are denoted HA. Also listed are composite cylinder assemblage results

which are denoted OGA. It is seen that in most cases the numerical values

are so close that they are indistinguishable for all practical purposes.

As a further comparison numerical results for square arrays of identical

circular fibers, fig. 2.1.5, which were obtained in [3. 193 have been plotted

together with OOA results for same phase properties. Fig. 3.5.10 shows

. 9:

such plots for transverse Young's modulus E T , where ET(+) has been used

as OGA result. Also shown are experimental results from [3.193 . It is

seen that the two curves are quite close up to v2 = 0.7 and both agree

reasonably well with the experimental results.
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It should be noted that the square array plot terminates at

v 2 = Tr/4 = 0. 785, this being the maximum possible fiber packing for a

square army. It is also to be noted that in FRM the fiber volume fraction

can usually not exceed 0.7 because of manufacturing difficulties.

Fig. 3.5.11 shows a similar comparison for G A Again, it is seen

that for a similar range of fiber volume fraction the two curves are quite

close. Experimental results for this case have been given in [3.19] .

As they are extremely scattered they are cons idered unreliable and are there-

fore not reproduced.

The previous comparisons between numerical and analytical results

lead to the following conclusions: both kinds of results are numerically

extremely close for hexagonal arrays and quite close for square arrays.

Comparison of all results with experimental data shows about the same kind

of agreement. However, the composite cylinder assemblage results have

an overwhelming advantage in that they are simple closed form expressions

which can be evaluated in very short time with a slide rule. In contrast

numerical regular array analyses must be performed by computers with

tedious programming and at great expense.
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APPENDIX 1

Isotropy - Transverse Isotropy Analogies for Effective Elastic Moduli

We consider two fibrous or fiber reinforced specimens of entirely

identical phase geometry. In the first specimen the phases are isotropic,

while in the second the phases are transversely isotropic about an axis in

cylinder generator direction.

Let the specimens be macroscopically transversely isotropic.

choose as basic EEM the set k

* 9:

these are denoted .k i G etc.1 ' T

they are denoted tk , tGT etc.

Consider first the pair k

3.4.3, equs.

We

, G T , G A, EA and '0A. For isotropic phases

while for transversely isotropic phase,

9:

and G T . It has been seen in paragraph

(3.4.68 - 70) that the computation of these EEM is based on a

plane strain problem. Hence the first isotropy-transverse isotropy analogy

as expressed by (3.5.25) applies at once to these EEM. Thus

W

(a) If expressions for .k and .G are known for isotropic phases, expressions
1 1 T

for t k and tGT are obtained by use of the replacement scheme (3.5.25) in

the expres.sions for .k andI iGT "

Next consider G A . Its computation is defined by the anti-plane

problem discussed in paragraph 3.5.1 and hence the second isotropy-transverse

isotropy analogy applies. Thus
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(b) If iGA is known for isotropic phases tGA is obtained by replacement of

phase shear moduli in iGA by corresponding axial phase shear moduli.

Finally, consider EA and v A . Here the relations (3.4.117 - 118)

can be used to advantage since these were explicitly derived for transversely

is otropic phases.

These relations are here rewritten as follows

. 4(v _-v ,)2

k2 k-1

*
_) =_ +

t A A 1 1

k 2 k I

k k
t

k* k
t

(I)

(2)

Now since tk can be simply obtained from analogy (a), tEA and

are given for transversely isotroptc phases by (1), (2).

t A

It should be noted that everything is simply generalized to the case

of macroscopic square symmetry with transversely isotropic phases. In that

case there is an additional effective shear modulus G T , (3.4.56) , which

is also defined by a plane strain problem and thus obeys the analogy (a).

Everything else remains the same.
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APPENDIX2

Internal Stresses

The general problem of the determination of internal stresses in a

composite requires the complete solution of the elasticity problem for the

composite material, as described in par. 3.2.3. It has been shown in par. 3.5.1

that for a fiber reinforced material with continuous fibers the problem can be

considerably simplified by the establishment of two dimensional formulation.

Only in some very special cases, par. 3.5.2, is it possible to determine

stresses for fibers of arbitrary cross sections. In general, the internal stresses

depend upon the detailed internal geometry i.e. fiber cross section shapes,

fiber positions, and therefore even the two dimensional formulation becomes

extremely difficult. Consequently, stress analysis must be limited to simple

geometries such as regular arrays of identical circular or elliptical fibers and

the composite cylinder assemblage model.

It should , however, be borne in mind that the reliability of internal

stress computation for such simple models of fiber reinforced materials is quite

problematic from a practical point of view. There are inevitably geometrical

discrepancies between a real fiber reinforced material and the simplified model

which is being analyzed, e.g. broken fibers, matrix-fiber interface separation.

Such local imperfections may lead to important local stress concentrations

whose determination is not only extremely difficult :but in a sense imposslble,

since no precise description of the imperfections is generally available.
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It may of course be argued that the role of such imperfections should

also be considered in EEM analysis but there they are fortunately of minor

importance, for EEM computation is based on determination of field averaqes.

While local stress or strain discrepancies may be severe, their contributions

to their averages appear to be insign_icant.

A (perhaps exaggerated) analogy which comes to mind is the kinetic

theory of gases. While relations between macroscopic variables such as

pressure, temperature, entropy etc. can be accurately predicted. _t _s

impossible to determine the detailed motion of a single molecule.

Numerical analyses of internal stress fields for hexagonal,

square and rectangular arrays of identical circular or elliptical fibers have

been given in e.g. [3.6], [3.22-24] for isotropic fibers and matrix.

Recently a number of papers have been concerned with isolated aspects of

extension of stress analysis to the case of transversely isotropic phases.

The problem of such phase anisotropy has been resolved in general fashion

in par. 3.5.1, where a complete formulation for transversely isotropic phases

has been given. It is recalled that such formulation is in no sense more

difficult than the isotropic phase formulation.

Here we shall be concerned with internal stresses in composite

cylinder assemblages, with transversely isotropic fibers and matrix, which

will be given by simple analytical expressions. The reason for the simplicity

of the results Is that for boundary conditions which lead to exact closed

9: 9: W 9: 9¢ 9:

expressions for EEM, i.e. k , EA, VA, GA , j_ and n , the internal fields
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in the composite cylinder assemblage are exactly known and are merely the

internal fields in any composite cylinder under the same boundary conditions.

The situation is different and complicated for boundary conditions associated

with determination of G and E .
T T

We commence the composite cylinder assemblage stress analysis

with plane isotropic straining as given by (3.4.59). In that event the stress

and displacement fields in any composite cylinder, fig. 3.5.1, are given by

(3.5.74-75). The boundary conditions (3.5.71c), (3.5.76-77) easily lead

£o the determination of the constants BI, C

become known.

i and B2 and thus all stresses

Resulting important matrix and fiber stresses are

(i) _(i) . o kl +GI

°ee(max) = ee (a)=-.e k2 0cz+G1)vI + _i+G1) v2 (1)

c(1) = c (1) (b) =2,°k (2)
rr (max) rr

k2 +G I
(3)c(I) = 2 e°Ll

zz (k2+G I) vI + (kl+G I)v Z

k I +G 1

0 (2) = 2 e°_ 2 (4)
zz (k2+G1) v 1 + (kl+G 1) v 2
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Here the usual notation 1 - matrix, 2 - fibers has been adopted, k is given

by (3.5.91), G 1 is transverse shear modulus GT1 and °(1)zz and o (2)zz are

constant throughout their phase regions. In the case of isotropic phases

the phase moduli in (1-4) are given by (3.4.89).

Stress concentration factors in the matrix may be defined by division

of stresses by their corresponding values in the absence of fibers. Since

in the absence of fibers the stresses in any cylinder, and also in the whole

specimen, are given by

O O

o" = o-88=2k I¢ _ =2J, ¢ (5)rr zz 1

We have from (1-3) and (5)

k2 k + G 1
S (I) (a)= 1

80 _ (k2+G I) v I + (kl+G I) v 2
(6)

s(I)to)=
rr kI

(7)

_2 kl + G1
S (1) _

zz L1 (k2+G I) v I + (kl+G I) v2
(8)

where S denotes stress concentration factor.
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If the fiber reinforced specimen is subjected to the plane isotroplc

stressing boundary conditions (3.4.62) then the stresses can be immediately

obtained from (i-4) by the replacement

O

o _ (9)

2k

where k is given (3.5.91). It follows that all stress concentration factors

(6-8) remain the same.

Next we consider the case of uniaxla ! straining of a cylindrical

specimen in fiber direction with no load on the lateral boundary of the specimen,

as expressed by (3.4.37). In that event a typical composite cylinder is in

axially symmetric state and is subjected to the boundary conditions

O O

ul=u =e x I = c z (a)Z

(io)

o (b) = 0 (b)
rr

It is seen that the problem is one of plane strain with uniform axial strain,

whose general formulation was given in par. 3.5.1. Elementary considerations

lead to the results



(I) o
U = ¢ Z

Z

188

(a)

(I)= BIr +Cl/r
r

(b)

c(I)= L ¢o +Zk I B1 _ 2G 1 Bl/r2IT 1
(c) (_l)

o(1)= _i ¢oO0 +2k I B1 +2G 1 Bl/r2 (d)

O
c(I)=n e +2_ I B1zz 1

(e)

(2) o
U = ¢ g

Z

(a)

u(Z)=r B2r

0 -2-()= o (2)
IT 88 = L2 ¢o +2k 2 B2

to)

(i2)

(c)

o

c(2)=n2 ¢ +2_ 2 B2 (d)
ZZ

while all other displacements and stresses vanish.

The constants BI, C 1 and B2 are easily found from the conditions

o (I)Oo)= o (a)
rr

u (I)(a)= u (z)(a)
r r

(b) (13)

u (I)(a)= u (2) (a) (c)
IT rr
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Important resulting stresses are

°(1)zz= e° E1 [I +

4G1 _1 (Vl-_2) v2 ]
_I v2 Gl/kl+Vl GI/kZ_ i]

(14)

c(2)(a)= c(1)(a) = 2eOGl (_2 -Vl) Vl
rr rr v2 Gl/k I + v I Gl/k 2 + 1

(15)

0 (I)(a)= 2 e°G (_1 - _2)(I+ v2)

88 1 v2 Gl/k I +v I Gl/k 2 + 1
(t6)

4G1 _;2 (_2 - Vl ) Vl ](2) °E 2 i+
zz = e E2 v2 GI/I_ 1 +v I Gl/k 2 + ! .i

(17)

Here E is axial Young's modulus, v is axial Poisson's ratio and G

is transverse shear modulus. The stresses c(I) and c(2) are constant through-
ZZ ZZ

out their phase regions. It is easily seen that computation of _ from (14),
ZZ

(17) and division by eo leads to EA of the oomposite cylinder assemblage

as given by (3.5.96).

It is recalled that for the case _2 = _1 a general internal stress solution

for arbitrary cylindrical geometry was given in par. 3.5.2, equs. (3.5.57).

Indeed, it is seen that for _2 = _I the stresses (14-17) reduce to the elementary

results (3.5.57). It is of interest to compare the numerical values of (14-17)
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for _2 = v1 with those predicted by (3.5.57). Taking as an example an E-Glass-

Epoxy FRM with elastic properties as listed in table 3.1, for the case v 1 =

v 2 = 0.5, we have from (14-17)

(1) = 1.0334 e° E
ZZ I

(2)zz =0.9991 o E2

_(1) (a)
rr

a_- _ - 0.046
ZZ

_19)(a)
= 0.138

0( 1)
EZ

It is seen that the axial stresses (_,1,(% , _,2,(_ are very close to the results
ZZ ZZ

(3.5.57a) and it may be therefore surmised that (3.5.57a) should closely

approximate the axial stresses in any FRM with continuous fibers.

Finally, it is noted that if the terminal sections of the fiber reinforced

O
specimen are loaded by uniform stress c; 1 1 then the stresses corresponding

to (14-17) are found by the replacement

O

o 11
¢ _ . (18)

E A
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where E A is given by (3.5.96).

Next we consider the case of axial shearing with boundary conditions

O

o x2 u2(S) = ¢ 12 Xl u3(8) = 0 (19)u I(S) = ¢ 12

The problem of a typical composite cylinder in the assemblage in this case

is described by (3.5. i02-i05) where in view of (3.5.34)

Io(m) =G =G -- (20)
rz m B r 8z m r B8

A simple calculation yields

m=l,2

(i) = 2e12 (_1 Y+ i+ (y-l)a2/r 2
_rz 7Vl + l+v2 cos 8

(a)

o"(I) - 2 '12 G1 "Y+ 1 -(7-i) a2/r 2 sin 8
8z = YVl+ l+v2

0

(:;(2) 4g 12 G2 cos 8= (c) (2i)

rz 7Vl + l+v 2

0

2) 4 e 12G2 sin 8
yv I + l+v 2

(d)

Y = G2/G1 (e)
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and all other stresses vanish. The resultant shear stress • at any point

is given by

2T= +
rz _ 0z

Its maximum in the matrix is located at r = a, @ = 0 , with value

2y

max "12 -i YVl+l+v 2

while throughout the fiber

40
¢12 G1

= (23)
YVl+l+ v 2

In the absence of fibers the only surviving stress is

0

_12 = _ = 2¢12 G1 (24)

Therefore the maximum matrix shear stress concentration is from (22) and (24)

s -- 27 (2s)
'r YVl+l+v 2

It should be recalled that G 1 , G 2

transversely isotropic phases.

are axial shear moduli GA1, GA2 for
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If instead of (19) the specimen is subjected to axial shearing

T 1(S)= °°12 n2 T2 (S) = o12 ni T3 (S)= 0 (26)

then the stresses are given by (21) with the replacement

O
O

o 12

¢ 12 *

2G A

where G A is given by (3.5.111).

(27)

exact solution for internal stresses in the composite cylinder assemblage

is not available in this case.

.
lower and upper bounds on G

T

On the other hand internal fields which lead to

have been constructed. As has been indicated

in par. 3.5.3 the upper bound on G , (3.5.113), may actually be the exact
T

result for this EEM in the event that fibers are stiffer than matrix, if this

conjecture is correct, the admissible displacements and associated stress

fields on which the upper bound construction is based are the actual displace-

ment and stress fields in the composite cylinder assemblage. Consequently,

it is not unreasonable to regard these fields as approximations, at least.

The stress fields are the ones produced in any composite cylinder by the

boundary conditions (3.413) , with traction and displacement continuity satis-

fied at fiber-matrix interface. A solution for the displacement fields is given

in par. (3.6.4), equs. (3.6.85-88). Computation of the associated stresses

is an easy matter but the resulting expressions are complicated. Suffice it

here to give the fiber-matrix interface stresses _rr and _0

There remains the difficultproblem of transverse shearing. An
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arr (a,0) = 2G 2 ASe sin 28

e 3 ¢

ore(a,e)= 2G2 _'S + 3-2v2 A6 )cos 2_

where A5e A6e• are constants to be found by solution of the six-by-six

system of equations (3.6.8W .
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3.6 BOUNDING METHODS FOR EFFECTIVE EIASTIC MODULI: CLASSICAL

EXTREMUM PRINCIPLES

3.6.1 Motivation

In the preceding chapter we have been concerned with computation

of EEM of FM and FRM by direct rigorous methods, In view of the extreme

difficulty of the problem it is not surprising that results could be obtained

only in special circumstances. Solutions were obtained either for special

re lations between phase moduli, par. 3.5.2, Or for special geometries,

pars. 3.5.3-5.

In the present and next chapter we shall develop variational

bounding methods f or EEM of FM and FRM. Such methods are of crucial

importance since they enable us to estimate EEM by bracketing them

between lower and upper bounds in cases where direct computation is

impossible or extremely laborious and difficult.

Bounding methods will be applied in two different classes of

problems. In the first class the phase geometry is only partially known.

Direct computation of EEM is then impossible , not just because of mathe-

matical difficulty but because the problem is then indeterminate. It is ,

however, possible to obtain bounds on EEM in terms of the available

information. The most important example for this is a FM in which only

phase moduli and phase volume fractions are known.
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In the second class of problems the phase geometry is completely

specified but direct computation is difficult. It has been seen that even

such simple geometries as square and hexagonal arrays of identical

circular fibers could only be treated by numerical analysis with the aid of

computers. In such cases it is also possible to construct simple closed

form bounds which provide valuable information about the magnitude of the

EE M.

It happens at times that bounds obtained are so far apart that

they are useless from a practical point of view. It happens at other times

that bounds are so close together that they determine EEM to all practical

purposes.

3.6.2 Principles of Minimum Potential Energy and Minimum Complementary

Energy

Derivations of elasticity extremum principles may be found in many

textbooks (see e.g. Fung [3.25] ). Usually the principles are derived by

methods of the calculus of variations, for homogeneous or continuously

non-homogeneous bodies. The present derivation of the principles departs

from conventional derivations in that (a) the principles are derived for

heterogeneous bodies; (b) finite differences are used instead of variations;

(c) the principles are constructed in a straightforward manner, starting out

with the governing elasticity equations.
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We consider a multi-phase elastic body whose phases are homogene-

ous and anisotropic. For present purposes we need only consider the case

of vanishing body forces and we note in passing that all theorems which

will be derived may be easily generalized to the case of non-vanishing

body forces.

Suppose that the boundary conditions on the external surface are

o
u. (S)= u. on S (a)
I I u

o

T i {S) = CijklUk,lnj = T I" on S_I (b)

(3.6.1)

Other types of boundary conditions will be considered further below. We

choose to formulate the problem in terms of displacements, so the governing

th
equations inthe m phase are of form (3.2.27),

(m) (m) = 0 in R (3.6.2)
C ijkl u k, lj m

Furthermore, continuity conditions of type (3.2.28) must be satisfied at all

interfaces. These are written here in the form

u i Uk J} (a)
continuous on Sin t

T = _ n. = C n " (b)
i ij ] ijkl ,1

(3.6.3)

where Sint. denotes all interface surfaces.

problem is denoted

u (m)U. = . inR
1 i m

The unique solution of this

(3.6.4)
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We now define a so-called admissible displacement field u. which
1

is continuous throughout the phases and also satisfies the following requirements

"" O
U. = U. on S (a)
I i U

ui continuous on Sint. (b)

(3.6.5)

0
where u.

I
is the same as in (3.6. I) . We define the difference field A U. by

1

_u = u. - u (3.6.6)
I I i

It follows from (3.6. la) , (3.6.5a) and from (3.6.3a), (3.6.5b), respectively

that

n u, = 0 on S (a)
I U

bu t continuous on Sint. (b)

(3.6.7 ,)

We also denote hu. in a form similar to (3.6.4)
1

Au. = hu (m). in R (3.6.8)
I I m

^ (m)
Now multiply (3.6.2) by au. and integrate over the phase region

1

f (m) u(m) _u! m) dV = 0
Cijkl k,lj t

V
m

f [(c(m) (m) A u(m)),jijkl u k,l

V
m

'm'tJijkl Uk, 1

f (m) (m) _m) n. dS -
Ctjkl Uk,l t }

S
m

f (m) (m)Cijkl Uk,l

V
m

AU (m) dV
1,}
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where S is the surface enclosing V
m m

used. Now

and the divergence theorem has been

Cij kl Uk,lj

V

Au. dV = Z /_(m) u(m) Au!m)dV= 01 m _ijkl k,lj 1

V
m

r. / _ (m)m Gijkl

S
m

m

S
m

u (m) Au(m) n dS- _ f _(m) (m) Au(m)dVk,1 i j m Gijkl Uk,l i,j

V
m

Ti(m)Aui(m)dS - mT'fGijkl-(m)u(m)iAu(m)i,jdV

V
m

(3.6. 9)

The surface integrals in (3.6.9) are taken twice over the interfaces and

once over the external surface S. The interface integrals all cancel because

of T (m).and Au (m).continuity at the interfaces (see discussion in par. 3 .1.3
I 1

after (3.1.47)). Therefore (3.6.9) assumes the form

f f (m) (m) u (m) dV• Uk,l t,]T i Au: dS - m_ j c ljkl A , ,
S V

m

=0

which in view of (3.6. lb) and (3.6.7a) can be written as

fT O dS - [ _(m) (m) Au(m)dVAu i mZ Gijkl Uk,1 i,j
J

ST Vm

=0 (3.6.10)

Now consider the integral

Up = _- Ciikl ui,j Uk, 1 dV - : u.ldS

V ST

Vm ST

(a)

(3.6. ii)
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VV ¢ 1 (m) u(m) u(m) _ 1 (m) (im) _i)m = -2" Cijkl i,j k,l _ Cijkl ¢ ¢
(b)

¢

where u, is the elasticity solution of the problem and W is the strain energy
1 m

th
density of the m phase. The expression (3.6.11) is traditionally known

as the potential enerqv.

If the actual u. in (3.6. ii) is replaced by the admissible u. we have
1 1

/=_ Wem dV- T u dSl (a)

V m S T
(3.6.12)

1 (m) u(m) u(m) _ 1 _(m) _-(m)-_l) (b)W_- 2 Cijkl i,j k,l 2Uijkl ij

where

_(m) 1 ,-,,!m)u!m.)
ij =T(u + ) (3.6.13)I,] ],I

The expression (3.6.12) is here called the potential enerqy functional.

In view of (3.6.6) the difference between (3.6.12) and (3.6.11) can

be written in the form

_'Up- Up= A Up = A (I) Up + A (2) Up (a)

f (m) fT 0
(m) u(m) Au dV - Au dS = 0 (b)_(i)up =_ Cijkl k,l i,j i

V STm

1 f_(m) Au(In) (m) dV (c)A(2)Up = TZm uijkl i,jAUk,l

V
m

(3.6.14)



201

Here (3.6.14b) vanishes because of (3.6.10). Note that in the (3.6.14b)

_ (m) .., (m)
volume integrals the symmetry Gijkl = _klij has been used to cancel the 1/2.

Now if we define

(m) 1 (A u(m)+ A ul?_)A'ij = _" i,j

then (3.6.14c) can be written as

(2), _I / (m) A e(I) h¢(m)dVA  P--F c ijkl
V
m

(3.6.15)

It follows from the positive definiteness property of elastic moduli, (3.2.9),

that the integrands in (3.6.15) are always positive and, therefore , all

integrals are positive. Therefore,

(3.6. !6)

(m) Au (with equality occurring ifand only if A e = O. But in that event m_)
i] I

is at most a rigid body motion; moreover, one and the same rigid body motion

for all phases, and thus of the whole body because of Au interface continuity,
i

(3.6.7b). But because of (3• 6.7a) this rigid body motion must vanish•

AU (mConsequently, (3 6 16) can vanish only when _)= 0, in which event u is
• " 1 i

the elasticity solution u., because of (3.6.6).
1

We now have from (3.6.14a ,b) and (3.6.16)

Up_ Up (3.6.17)
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where equality occurs if and only if the admissible displacement happens to be

the true elasticity displacement.

The inequality (3.6.17) expresses the principle of minimum potential

energy which may be stated as: The potential enerqy is the absolute minimum

of the potential enerqy functional.

For purpose of future applications it is important to consider mixed

boundary conditions of different form than (3.6.1). Suppose that there are

prescribed on the entire boundary traction components in one or more directions

and displacement components in the remaining direction or directions. (But

never both a traction component and displacement component in the same

direction). Examples are

o o o (a)
u I(S)= ul T2(S) =T2 T3(S) =T3

TI(S) = T °
1 u2(S) =u2 u3(S) =u 3 (b)

(3.6.18)

It is recalled that such mixed boundary conditions occur in formulations of

problems of computation of EEM, pars. 3.4.2-3.

The principle of minimum potential energy is easily adapted to this kind

of boundary conditions. The admissible displacement now has to satisfy only

those displacement component boundary conditions which are prescribed and the

surface integrals in (3.6.11-12) have to be considered only for those traction

components which are prescribed. Thus, for example, for (3.6.18a) we have
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~ o (a)ui(s)= u i

u2(s) , u3 (S) arbitrary (b)

(3.6.19)

dV
V
m

(r2 o u3)d s- u 2 +T 3

S

(a)

(3.6.20)

Up= _m _'m ¢ dV - u2 +'3 u3lu°

V S
m

(b)

Next we consider the important special case of displacements

prescribed over the entire surface S (ST 0 in (3.6. i) ) . In that event the

surface integrals in (3.6.11) and (3.6.12) vanish. Therefore, (3.6.11 - 12)

can be written in the forms

UC=_n fW'm dV

V
m

(a)

_¢=mZ f_t rmCdv (b)

V
m

(3.6.21)

Now U ¢ is the strain energy and U¢

and the theorem becomes:

_¢ _ U'

is called the strain energy functional

(3.6.22)
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where again equality occurs if and only if the admissible displacement is the

true elasticity displacement.

The statement (3.6.22) may be called the principle of minimum strain

energy. In words: For a body with displacements prescribed over its entire

surface the strain energy is the absolute minimum of the strain enemy functional.

We now proceed to derive another class of extremum principles which

involve admissible stress fields. We consider again a heterogeneous body

consisting of any number of anisotropic phases, which is subjected to the

boundary conditions (3.6.1). The continuity conditions are still (3.6.3).

It is desired to formulate the boundary value problem in terms of stresses.

th
We have in the m phase

(3.6.23)

s(m) (m) _ 1 , (m) U(jl)i): ¢ijijkl a kl 2 _ui,j + (m) (b)

The displacements may be eliminated from (3.6.23b) in the following

manner: since (3.6.23b) are strains they must satisfy the strain compatibility

equations which may thus be expressed in terms of stresses.

a set of Beltrami-Michell equations for the anisotropic case.

are still present in (3.6.1a)and (3.6.3b).

Thus is obtained

However, u.
1

IfS = 0 in (3.6. I) the displacements
U
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disappear from the boundary conditions but not from the interface continuity

conditions. We thus conclude that a stress formulation is not useful for

actual solution of problems in heterogeneous bodies. (Recall a similar

situation in par. 3.5 .i for Airy stress function representation).

For present purposes we retain the formulation (3.6.23). We define

an admissible stress field

crij c_ in Rm (3.6.24)

which satisfies the following requirements

,-_ mo

ij n. ] = ±£ on S T (a)

(m) = 0 in R (b) (3.6.25)
ij ,j m

T. = o n continuous on Sin t (c)1 ij j

We further define the difference

A )="_ )- oij (3.6.26)

It follows from (3.6.23), (3.6.25) and (3.6.23a) that

= ao n = 0 on S T (a)ATi ij )

Ao (m)... = 0 in R (b) (3.6.27)
i],3 m

AT i = A oij n,3 continuous on Sint. (c)
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Now multiply (3.6.23) by h _,m,¢_.
1]

and integrate over V . Then
m

f (s(m)i,kl o _l ) Act!m)-l] '(i7)'' A cs(m) ) dV =Oij

V
m

=/S ijkl

V S
m m

(3.6.28)

•where the conversion to the surface integral is done by aid of the theorem

of virtual work. We now sum (3.6.28) over all phases. Then by a previous

argument the surface integrals over the interface cancel because of u (m). and
1

AT (m). continuity. Thus
1

Z f (m) (m) hg(m) dV-fu AT dS=0m Sijkl qkl ij i t

V S
m

f (m) (m) _ fo_. " A _( dV - u
m _ijkl _kl i

V S
m u

AT. dS
1

where the last step is due to (3.6.1a) and (3.6.27a).

Now consider the expressions

/ riow ° dv- u.m i t

V S
m u

dV (a)

(s 1 . (m) c_(m) cs(_l)Wm = -2-_ijkl ij
(b)

(3.6.29)
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/ / Ou. T:z dV-
m i 1

v s
m u

dV (c)

_ro 1 _ (m) ,-, (m) ,'_ (m) (d)
m = 2"- 5ijkt o ij kl

The first integral is traditionally called the complementary energy and the

second is here called the complementary energy functional. The difference

between (3.6.2 9c ,a) may be written in view of (3.6.2 7) in the form

_C - UC = AUG = A (I)UC + A(2)U C Ca)

A(1)Uc /_ (m)(m) A o (m) dV_fATiui o= Zm Sijkl (_kl ij dS = 0 (b)

V S
m u

(3.6.30)

f c_(m)
1 _ (m) A (m) A dV

a(2) Uc= 2"- _m Sijkl gkl ij

V
m

(c)

Here (3.6.30b) vanishes because of (3.6.28) . Note that in (3.6.30b) the

(m) (m) 1
symmetry Sijkl = Sklij has been used to cancel the _- .

Now it follows from compliance positive definiteness, (3.2. i0), that

A(2) U C > 0 (3.6.31)

equality occurring ifand only if A _(m) = 0
11

which is the true elasticity stress field.

"_(m) = o(m)
But in that event ij ij
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We now have from (3.6.30a) and (3.6.31) that

UC >U G (3.6.32)

equality occurring if, and only if, the admissible stress field happens to be

the true elasticity stress field. Accordingly, the principle of minimum

complementary energy is stated as: The complementary energy is the

absolute minimum of the complementary energy functional.

Again we consider mixed boundary conditions of type (3.6.18). Now

we require that the admissible stress field satisfy only those traction

component conditions which are prescribed and in the surface integrals

in (3.6.29) we retain only the contributions of the displacement components

which are prescribed. Thus, for (3.6.18a) we have

_ij n|

_2j n o]=T2

j n'=]

%= mfW;
V

m

V
m

arbitrary

on S (3.6.33)

dV-/T1 u°ldS

S

(a)

(3.6.34)
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Next we consider the important special case when S = 0 in (3.6.1),
U

i.e. tractions are prescribed over the entire surface S. In that event the

surface integrals in (3.6.29) vanish, and thus (3.6.29a,c) reduce to

o /W _ dV (a)U =_ m

V
m

U (_ Z W _ dV (b)
m m

V
m

(3.6.35)

The first integral is the stress energy (this expression is here used instead

of the cumbersome expression: the strain energy in terms of stresses) and

(3.6.35b) is called the stress energy functional. The theorem becomes

U > U (3.6.36)

equality occurring if, and only if, the admissible stress field is the true

elasticity stress field.

The result (3.6.36) may be called the principle of minimum stress energy.

It states that: The stress enerqy is the absolute minimum of the stress energy

funct iona i.

3.6.3 Elementary Bounds for Fibrous Materials

In the present paragraph we shall exploit the previously derived extremum

principles to obtain lower and upper bounds for EEM of fibrous materials.
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The phase geometry of such materials is, by definition, irregular. The

information which is generally available to us about such a material is

phase elastic moduli, phase volume fractions, and the macroscopic elastic

symmetry of the material.

on this information alone.

the utilization of partial information.

It is our flrst task to express

The EEM bounds which will be derived are based

Thus, the present analysis is an example of

elastic energies in terms of EEM

or EEC. This has already been done for a general macroscopically

anisotropic body in par. 3.3.2, equations (3.3.26 - 27). It is a very

easy matter to specialize these energy densities for various cases of macro-

scopic symmetry. It should, however, be noted that it is generally more

l

convenient to directly evaluate _-- $ij ¢ij for a specific case instead of

simplifying C ijkl and S ijkl in (3.3.26 - 27).

For the macroscopically orthotropic material we have in view of

(3.4.1 - 2) and (3.4.5 - 9)

* -2 * 2 * -2
2W ¢= C + C

11 ¢11 22 ¢22 +033 e33

* - _ * -- -- * -- _

+2012 ¢11 ¢22 +2023 ¢22 ¢33 +2013 ¢11 e33

* -2 * -2 * -2

+4044 ¢12 +4055 ¢23 +4066 ¢13 (3.6.37)
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-2 -2 -2 *

_11 + cY22 + _33 2v12 -
2_r°= "-7-- ""7-- . . all 522

E 1 E 2 E 3 E1

* * -2 -2 -2
2v23 _ _ 2v13 - - _12 0.23 0.13

* 0.22 0.33 * 0.11 0.33 + "-7--" + "--'7-- + ""7"--

E 2 E 3 C 44 C 55 C 66

(3.6.38)

For the transversely isotropic material it is most convenient to use

the effective or macroscopic counterparts of (3.4.86 - 87). We then have

._ _ _ . _ _ 3)2*-2 +2_ _1 + ¢33 ) + k +2_fe= n ell 1(¢22 (¢22 _3

* - _'33)2 * -2 * -2 -2+ GT (e22 - +4GT ¢23 +4GA (¢12 + ¢13) (3.6.39)

-2
0.

27,0.- 11 + 1 -2, ---7-- (a + 0.33

E A E T

2 vA _ _ 2 v T _ _

* 0.11 0.22 * _22 a33

E A E T

2v

- _ _ii 0"33
E T

_ m

-2
0.

23 + 1 -2 - 2
. . (ai2 +a13 )

G T GA

(3.6.40)
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For square symmetric materials IGT in the second terms from the end
!

in (3.6.3.3-4) must be replaced by G T ' equation (3.4.56).

For a statistically isotropic material the most convenient energy

densities are obtained by use of (3.4.95). Substituting these into

o. e.. =3oe+s.,e..
_] 1] 1] 1]

(3.6.41)

we obtain

*--2 * -- --

2_Ve= 9K e +2G (3.6.42)

-2 s i.) s.,2W- o_ o + U

K 2G

(3.6.43)

Fip_lly we record for future use energy densities of homogeneous materials

Transverse isotropy

2W ¢= n ¢211+2_ ell (¢22 + e33) + k (¢22 + ¢33)2

+G T (e22 - %3 )2 +4G T 2 +4% (¢212 + e213 ) (a)¢23

(3.6.44)

_11 1 (_2+o323)
2W_- _ _-'_--

2_
A

E_

Cl I(C22+ c33)

2

2vT c23
i 2 213 )+ (c12 + (b)ET o22 _33 G T GA
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Isotropy

2We= 9K2 + 2 G eij etj (a)

2 s s

2W__ _ + tj ij (b)
K 2G

(3.6.45)

admissible displacement is

_ = o Xl u 3 = 0 (3.6.46)o x2 u2 ¢ 12Ul = _12

It is seen that (3.6.46) satisfies the boundary conditions and is continuous

everywhere and, therefore, also at phase interfaces.

where K is the three dimensional bulk modulus.

It is recalled that in the problem of computation of EEM or EEC of a

heterogeneous body the boundary conditions are homogeneous. In the present

method of establishment of bounds the admissible displacement and stress

fields will be chosen in homogeneous form throughout the body. This implies

that the admissible displacement fields are all linear and the admissible

stress fields are all constant i.e. fields as occur in homogeneous bodies

under homogeneous boundary conditions.

We begin with macroscopically orthotropic bodies and we start with

the shear moduli: As a first example we consider G 12" Dual formulations for

this modulus are given by (3.4.10-12) and (3.4.19-21). In the first formulation

displacements are prescribed over the entire surface and, therefore, the

principle of minimum strain energy (3.6.22) is appropriate. An obvious
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From (3.4.11a), (3.6.37), (3.6.21)and (3.4.4)

2

U =2G ¢ V
12 12

(3.6.47)

For simplicity we first assume that the phases are isotropic.

(3.6.21b), (3.6.11b), (3.6.46) and (3.6.45a) that

2

= z (c I G2 oc Vl+ v2) ¢ 12 V

It follows from

(3.6.48)

Inserting (3.6.47-48) into (3.6.22) we have

.

G 12 < G1 Vl + G2 v2

To obtaina lower bound we use the formulation (3.4.19-21). Since

tractions are prescribed over the entire boundary the principle of minimum

stress energy (3.6.36) is now to be used. An obvious admissible stress field is

- 0
0 o 0

12

O
= (7

12
0 0 (3.6.49)

0 0 0

This stress field satisfies (3.4.19). It satisfies equilibrium since it is constant.

Its associated tractions are continuous everywhere and, therefore, also at phase

interfaces.

The stress energy is in view of (3.4.20) , (3.6.38),

2
O

o °12
U - V

2G
12

(3.4.4) and (3.6.35a)

(3.6.50)
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Now from (3.6.49), (3.6.35), (3.6.29d), and (3.6.45b) we have for isotropic

phases

2
O

o v 1 v 2
,-,o 12 _ + _ )V (3.6.51)
u - 2 ( G I G 2

Inserting (3.6.50-51) into (3.6.36) we find

-1

v 1 v 2 ,
--+--) _G

( G 1 G 2 12

Obviously nothing is changed in the bounding procedure for the EEM

* 9c

G and G
23 13"

We can, therefore, summarize that for a macroscopically

orthotropic body with isotropic phases

- -i

1 * * * < G (3 6.52)
('_) <G12, G23, G13

where

= G 1 v I + G 2 v 2

v I v 2

G G 1 G 2

(a)

(b)

(3.6.53)

Suppose now that the phases are orthotropic with elastic axes parallel

(I) _ (2) etc. The preceding
to the x I, x 2, x 3 system and shear moduliG 12 ' t_ 12

method easily generalizes (3.6.52) to read
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-i
__ * _ & (a)( T ) _ G 12 12
G12

-I

__ _ (b)( 1 ) < G 23 G23
G23

(3.6.54)

-- -1

__ <
( 1 ) < G 13 G13

G13

(c)

Next we consider the Young's moduli E 1' E 2 and E 3"
We start with

the boundary traction formulation (3.4.28-36i. It is seen that the principle

of minimum stress energy should be used. In each case the admissible

stress fields are chosen as the constant fields (3.4.29a), (3.4.32a) and

(3.4.35a). The analysis is in all aspects similar to that employed in the

previous establishment of lower bounds for shear moduli. If the phases are

isotropic we find that

-- -1
i * * * (3.6.55)

(_--) _ E l, E 2 , E 3

where -_ is the analogue of (3.6.53b) in terms of isotropic phase Young's

moduli:

Ifthe phases are orthotropic with elastic axes parallel to the composite's

axes, (3.6. 55) assumes the form

-i

(K) -_r.. 1
l

(3.6.56)
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where i= 1,2,3. An example for the left side is

v 1 v2

E 1 E(II) E (2)1

where the superscripts on the Young's moduli indicate the phases.

The construction of upper bounds on the Young's moduli is not so

straightforward. For simplicity we shall limit the treatment to transversely

isotropic phases with axis of symmetry parallel to the composite's x I axis.

T_=_ for _r_h_r_n_- phases is analogous, hut the results are cumbersome.

We now make use of the formulations (3.4.37), (3.4.39-40), (3.4.41-42)

and (3.4.43-44). We see that the boundary conditions are now of the mixed

type (3.6.18) and we use the principle of minimum potential energy for such

cases Starting with '_ " 37) we see that_" are a ". _o.e. L,._e special case of (3.6 !8a).

Inspection of (3.6.?.0) shows that the surface integrals vanish since the

entering traction components vanish. Therefore, the principle of minimum

potential energy reduces to that of minimum strain energy.

We choose an admissible linear displacement system of the form

_ O _

Ul _ 11 Xl u 2 = 8x 2 U3= ,{X 3 (3.6.57)

These u. satisfy the boundary condition (3.4.37a) and continuity everywhere.

Because of (3.6.19b) it is seen that B and _ are now arbitrary constants.

The strains ¢.. associated with (3.6.57) are
1]
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"o 0
ell

o B

0 0

0

Y

(3.6.5 8)

We insert (3.6.58) into (3.6.44) for the two phases and compute _¢ from

(3.6.21b). The result is

2
= 02U _ In

ii
+2f °

_ll
(_+ v) + _: (13+ v) 2

)2+ GT (8 -7 ]V (3.6.59)

where the overbars denote averages as in (3.6.53a).

Now because of (3.4.39), (3.4.5), and (3.4.8) the actual strain

energy is given by

2
* O

2U ¢=E e V (3.6.60)
] Ii

Since U is largerthan or equal to U _, (3.6.59-60) yield an upper bound on

E 1 interms of the unknown parameters 8 , V • To find the best upper bound

(3.6.59) is minimized with respect to 8, y. This procedure yields

2 -2

_ = __ (_ _ )v
2Umin i

Hence we have

-iT

(TA ) <-E
i

_2
(3.6.61)
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where the left side inequality follows from the adaption of (3.6.56) to trans-

versely isotropic phases. Recalling the relation (3.4.80-81) itis seen that

it follows from these that

*2
. .

EA=n .
k

and the upper bound in (3.6.61) is of the same form in terms of averages of

moduli. It is not difficult to prove that this form of the upper bound is an

inherent feature of the present bounding method. Consequently bounds for

E 2, E 3 can be written down at once from (3.4.82) . We have

- -1 . . 4_GT

< = -( 1 ) < E2' E3 k+mGT

m =i+

--2
4k_J

A

%

(3.6.62)

where the left side of (3.6.62) follows from (3.6.56).

If one or both phases are isotropic we can use (3.4.89) and (3.4.91)

to obtain the bounds (3.6.61-62) in that case.

We have so far constructed bounds for the three effective shear moduli

and three effective Young's moduli. Bounds for the three remaining EEM or EEC

are difficult to obtain for the present general geometry. Since the bounds

which are obtained by the present elementary method do not, in general,

give good estimates we shall not concern ourselves at the present time with

the remaining EEM or EEC.
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We now consider the transversely isotropic material with transversely

isotropic or isotropic phases. The bounds for the two effective shear moduli

can immediately be written down byadaption of (3.6.54). We have

(_-_A)_ GA _ GA
(a)

(3.6.63)

T -1 ,

(_TT) <GT<G T
(b)

If the phases are isotropic (3.6.63) reduce to

- -1
1 * *

(__) _ GA ' GT _ G (3.6.64)

Next we establish bounds for k Dual formulations for this EEM are

given by (3.4.59-61) and (3.4.62-64). In the first formulation we use the

principle of strain energy and in the second formulation the principle of minimum

complementary energy with mixed boundarF conditions of type (3.6.18a). Since

the analysis is completely analogous to previous ones we dispense with the

details. The bounds are found to be

-i

(vlv© iCi + =(7-) _ k*_ [ :kIv1+k2 v2
(3.6.65)

* * * * *

We now recall the general relations between k , n , £ , E A and _A

given by (3.4.112) , (3.4. 117) and (3.4. 118). These can be used conveniently

to construct bounds on the EEM involved, in terms of k bounds, Hill [3.5 ] .
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We consider first E A as expressed by (3.4. 117). It is seen that because of

the left inequality in (3.6.65) the parenthesis in (3.4. 117) cannot be

negative. It is also seen that the factor before the parenthesis cannot be

negative. It is, therefore, concluded that E A is a monotonically increasing

function of k . Consequently, replacement of k by any upper or lower

bound produces corresponding upper and lower bounds for E A. We express

this symbolically by

E
= E A (kt, ). ,,,

_TJ

EA(_) = E A (k (_))

(a)

(3.6.66)

Insertion of (3.6.65) into (3.4. 117) , therefore, yields the following bounds.

* (v2__l)2 kl k 2
_ E _ F. + 4 VlV 2

(3.6.67)

It should be noted that the phase Young's moduli and Poisson's ratios in (3.6.67)

are all axial. The lower bound (3.6.67) has been first obtained by Hill [3.5] .

Now it should be realized that the bounds (3.6.61) also apply for the

transversely isotropic material and the question is which are the better bounds ?

It turns out that the upper bounds in (3.6.61)and (3.6.67)are exactly the same.

This follows by simple algebra from the relations (3.4.80-81) for the phase

moduli. The lower bounds are, however, different and it is easily shown

that (3.6.67) gives the better one.
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Next we consider v A as expressed by (3.4.118). It is seen that the

sign of (_l-V2)/(k2-kl) specifies whether _A is a monotonically increasing

or decreasing function of k . It is easily seen that by the same reasoning

as employed in (3.6.66) we have

_;A(+) = _;A(k(-) )

VA(_) = _A(k(+))

VA(+) = _A (k (+))

k2 - k I

* * ]_)) k2 - k_A(-) = _A 0_ 1

>0

<0

(a)

(b)

(3.6.6 8)

We then have from (3.6.65), (3.4.118) and (3.6.68) that

VlklVl+V2k2v2 _A k

klV 1 + k2v 2

< * < -

V -- _) = V v i÷ V 2 v2> A> A 1
(3.6.69)

where the upper inequality signs are valid for (a) and the lower inequality

signs are valid for (b).

Bounds for n and 9 are similarly easily established by use of (3.6.65)

and the relations (3.4. 112).

For statistically isotropic two phase materials methods analogous

to the ones used above yield the results
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T -1 ,
(_--) <K < f (a)

T -i .
(b) (3.6.70)

-i . 9[c:
(_--) < E < (c)

3 K+G

The results (3.6.70a,c) were first given by Paul [3.26] .

Finally it should be noted that all results obtained in this paragraph

are easily generalized to any number of phases. It is merely necessary for

this purpose to rewrite the averages in the bounds for that case. Thus, for

G =_G v
m m m

To obtain some idea about the numerical values of the bounds we

consider a typical case of a fiber reinforced material composed of isotropic

glass fibers and fsotropic epoxy matrix. Phase moduli values are given by

E

h)

G

k

Epoxy (I)

0.4 x 106 psi

0.35

6
0. 148 x 10

6
0.494 x 10

Table 3.6.1

psi

psi

Glass fiber (2)

10.5 x 10 6 psi

0.20

4.38 x 106 psi

7.3 x 106 psi
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Supposethat the material is transversely isotropic and that the volume

fractions are equalv 1 = v 2 = 0.5. Then from (3.6.63), (3.6.65), (3.6.67) and

(3.6.69)

6 * *

0.29 x i0 psi _ G A, G T _

6 *

0.92 x I0 psi _ k

2.26 x 106 psi

3.90 x 106 psi

5.47 x 106 psi
5.45 x 106 psi < E A

0.210 -< '_ < 0.275
A

It is seen that the bounds for G G and k do not provide good estimates.
A, T

On the other hand, the E A bounds are excellent and the _ bounds are fair.

The present E A bounds already show that E is an excellent approximation

for E
A

of a typical FM or FRM.

It will be seen in chapter 3.7 that it is possible to obtain substantially

better bounds for EEM of fibrous materials, in terms of phase elastic moduli

and phase volume fractions.

3.6.4 Bounds for Circular Fiber Reinforcement

In contrast to the general fibrous materials considered in paragraph 3.6.3

we shall here be concerned with FRM whose geometry is completely specified.

We consider the important case of a FRM in which the fibers have

circular cross sections. The geometry is completely defined if the radii of
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the fibers and the locations of their centers are known. We shall here derive

lower and upper bounds for the EEM of such a FRM by use of the principles of

minimum potential and minimum complementary energies and the composite

cylinder results which were developed in par. 3.5.3.

It should be noted that the elementary bounds which were established

in par. 3.6.3 are certainly also valid for the present material. However,

those bounds are valid for all cylindrical geometries. It is our present purpose

to obtain improved bounds by explicit use of the present geometry.

To construct admissible fields which are suitable for the present

specific geometry we surround each fiber by an imaginary concentric circular

cylindrical surface which is entirely within the matrix. It is, moreover,

required that none of the imaginary cylindrical surfaces overlap. Fig. 3.6.1

shows an example of such a geometrical construction. It is seen that the FRM

has now been divided into a part of volume V which is the sum of the volumes
c

of all composite cylinders and into a remaining matrix volume V'.

Suppose now that a fiber reinforced cylindrical specimen is subjected to

homogeneous displacement boundary conditions (3.3.1). We choose as an

o
admissible displacement in V' the linear field ¢ .. x. In order to satisfy

l) ]

continuity the admissible composite cylinder displacement fields must now

o
assume the values _ .. x. on the outer surfaces of the composite cylinders

and they must also be continuous at fiber matrix interfaces. We may thus

choose as admissible fields in the composite cylinders their elastic displacement
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fields under the homogeneous boundary conditions (3.3.1). Thus, the

admissible field may be written as

f o V'

¢ ij x, in (a)

U. _
l

u (c) in V (b)
1 C

where u (c).is the aggregate of all composite cylinder displacements under
1

homogeneous boundary conditions. Thus, the field (3.6.71) satisfies

continuity and the boundary conditions. (*)

Next we suppose that the fiber reinforced cylinder is subjected to the

homogeneous traction boundary conditions (3.3. i0). We use the same

geometrical construction and choose the following admissible field

f
i o
ic_.. in V' (a)

I]

g.,=
U

(j(c)
., in V (b)

L i] C

(3.6.72)

O
where _..

l]
is the homogeneous stress field in (3.3. i0) and a _c' is the

D

aggregate of all actual elasticity stress fields in the composite cylinders

under the boundary conditions (3.3.10).

()'*'For u (c). computation we may consider any composite cylinder under
1

boundary conditions u(C)(s )=¢o.. Y , where y. is the local coordinate system with
1 C I] j ]

origin at cylinder axis. To comply with u(C)(s )= o x. there is added the rigid
1 c ij

o x(n) where x!n)are the coordinates of the cylinder center.
body displacement e ij

j ]
See similar reasoning, par. 3.5.3, eqns. (3.5.88-_9)and fig. 3.5.2. The rigid

body displacements do not contribute to the strain energy functional,they only
serve to assure displacement continuity.
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It is seen that (3.6.72) satisfies equilibrium in V' because it is

constant there and also in V because o(.c!.,is an actual elastic field in a
c U

composite cylinder. The traction boundary conditions (3.3. i0) are satis-

fied because of (3.6.72a). Traction continuity at composite cylinder-matrix

imaginary interfaces is satisfied by definition of (_(c),,, and traction continuity
I]

at fiber-matrix interfaces is certainly satisfied as a requirement of a com-

posite cylinder solution.

As has been seen before it is sometimes necessary to use mixed

boundary conditions for EEM calculation. In that event u. in V' is chosen
1

as the linear displacement which satisfies such boundary conditions and

similarly _ in V' is taken as the constant stress field which satisfies the
l]

boundary conditions. The fields inV are taken as elasticity solutions
c

of composite cylinders which are subjected to such boundary conditions.

In order to exploit the extremum principles we need the strain and

stress energy functionals (3.6.21b) and (3.6.35b) which are associated

with the admissible fields. The strain energy functional associated with

(3.6.71) can be written in the form

~¢ W_ ' (a)U = V' + U c

U ¢ = Z U ¢ (b)
C n cn

(3.6.73)
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e

where W I is the strain energy density of the matrix material with strains

o _ th
and U is the actual strain energy of the n composite cylinder under

c ij/ cn

the homogeneous displacement boundary conditions.

Similarly, the stress energy functional associated with (3.6.72) is

U = W 1 V' + U c (a)

U = 7, U (b)
c n cn

(3.6.74)

(3

where W 1 is the stress energy density of the matrix material with stresses

o U o th(_ and is the actual stress energy of the n composite cylinder under
ij cn

the homogeneous traction boundary conditions.

Expressions similar to (3.6.73-74) are obtained for mixed boundary

conditions in the event that the boundary conditions are such that the surface

integrals in (3.6.12a)and (3.6.29c)vanish.

For the purpose of computation of strain or stress energy in a composite

cylinder under homogeneous boundary conditions we go back to par. 3.5.3.

It has been shown there that such a composite cylinder has a set of apparent

elastic moduli which are the composite cylinder assemblage moduli. These

W W * W W

are here denoted by subscripts c, thus; kc, EAc, VAc, nc and _c which

implies that under homogeneous boundary conditions associated with these

moduli the composite cylinder behaves precisely as a homogeneous cylinder

with such elastic moduli. Since the strain or stress energy of an elastic body
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ifis given by the surface integral -_- T.u. dS and since the pertinent displace-1 1

ments and tractions on the composite cylinder surface for the cases considered

are just as in a homogeneous cylinder having the apparent moduli, it is con-

cluded that also for purpose of computation of strain or stress energy the

composite cylinder can be replaced by a homogeneous cylinder with apparent

moduli.

Suppose that in the geometrical construction shown in fig. 3.6.1 the

ratio a /b assumes M different values. For each of these values we have
n n

a group of composite cylinders which by the ,_su_,_.........u,_ par. 3.5.3 have the

same apparent moduli. Thus, such a group may be replaced by homogeneous

cylinders with appropriate apparent moduli. Then we obtain instead of the

original FRM another M+I phase equivalent FRM consisting of matrix of

volume V' and M different kinds of homogeneous circular cylinders of total

volume V o. Then, equivalent FRM bounds can be written down at once by

use of the bounds of par. 3.6.3 for fibrous materials, with M+I phases.

The procedure will be illustrated by construction of bounds for square

and hexagonal arrays of identical circular fibers. Composite cylinder con-

struction for these cases is shown in fig. 3.6.2 and it is seen that all com-

posite cylinders are identical. Let the volume fraction occupied by V be
C

denoted v . Clearly v is the fractional volume of a composite circle with
C C

respect to its circumscribing square or hexagon, respectively. By elementary

geometry
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square array (a)

hexagonal array (b)

(3.6.75)

Let the volume fraction of fibers relative to the whole composite be v 2 •

Since (a/b) 2 in each composite circle is the fiber volume fraction relative

to the composite cylinder it follows that

(a/b) 2= v2
v - V2c (3.6.76)

C

The apparent moduli of a composite cylinder are then found by substitution of

(3.6.76) into their expressions given in par. 3.5.3.

the replacement

v 2 _ V2c

This is equivalent to

(a)

v 1 _ 1 - V2c (b)

(3.6.77)

in the expressions for the EEM of the composite cylinder assemblage.

Resulting expressions of apparent moduli of composite cylinders are

denoted k etcc (V2c) " It is seen that in the present cases the equivalent

FRM has only two phases: matrix and composite cylinders of one kind. Hence,

we can use the two phase bounds of par. 3.6.3. We then have
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-1

[1-v v ] . . (V2c). C + • C < k < k I (l-vc) + kc Vc

ki kc (v2c)

(3.6.78)

E * 2 * *1 (l-Vc) +EAc (v c) Vc _ EA < E1 (l-Vc) +EAc (V2c) Vc

* ;]2+ 4 [_Ac (V2c) -Vl Vc (l"Vc)
kI k c (Vzc)

k I(I-Vc)+k c (v2_ Vc

(3.6.79)

l-v v ]-1 . .--c + . c < G A < G 1 (l"Vc)+GAc(V2c)v

G 1 GAc (V2c) c

(3.6.80)

To obtain bounds on vA the preceding method is not applicable since

bounds on _A cannot be found by extremum principles. We can, however,

use the results (3.6.68) with (3.6.78) and (3.4. 118) to find bounds for v A .

The results are

klk 2 (") 1 -'_'2 )

kI - k2 l'-v c v c ] < * v2k2-%'lkl <
+

klk2(vl-v2) I

k2 - kl kI(i-%)+kc (v_c)V
(3.6.81)
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where the upper inequality signs are valid for (3.6.68a) and the lower ones for

(3.6.6Ob).

It is to be noted that all the bounds apply for transversely isotropic

phases. In this case the shear moduli in (3.6.78) (introduced through (3.5.91))

are transverse, the Young's moduli and Poisson's ratios in (3.6.79) are axial,

the shear moduli in (3.6.80) are axial and the Poisson's ratios in (3.6.81)

are axial.

The EEM of the composite cylinder assemblage can also be obtained

by the same method. Indeed the initial derivation in [3.10] was based on

the present variational treatment. To see this we recall that in the composite

cylinders used to construct the assemblage the radii a /b are the same in all
n n

cylinders. The remaining matrix volume at any filling stage becomes V' ,

with volume fraction v'=l-v , according to the present construction. In the
c

limit of complete filling by composite cylinders

v'--_ 0 v _" 1 (a)
C

(an/bn)2 = v2 c v2 (c)

(3.6.8z)

Insertion of (3.6.82) into (3.6.78-81) shows that all bounds coincide and reduce

to the composite cylinderassemblaqe results (3.5.91), (3.5.96-97), and (3.5.111).

It is recalled that G T could not be obtained by the replacement method

given in par. 3.5.3, but with the present method it is possible to obtain bounds for
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GT' both for composite cylinder assemblages and any other circular fiber

arra ngeme nt.

Let a cylindrical fiber reinforced specimen be subjected to (3.4.13).

Then (3.6.71a) becomes

"_ _2 O _" Ou1 = 0 = ¢23 x3 u3 = e23 x2 (3.6.83)

The composite cylinder solution is denoted u "1"_ in the matrix shell and u "2"f_
i i

in the fiber. The boundary conditions are

(1) o o
(i)= o u = x 3 u 3 ,u i 2 e23 = e23 x2 r=b (3.6.84)

It is seen that we have a plain strain problem ..._:_,,,_.,,.=.._lio_.+_........t_= general

category of the first kind of boundary value problem discussed in par. 3.5.1.

Hence, u (1) and u (2) must satisfy (3.5.14) in matrix shell and fiber,

respectively, and also the interface conditions (3.5.15) and (3.5.19) on r=a.

A solution of this problem has been constructed in [3 _• _ua. The general

form of the solution is in vectorial notation

u_(1)/,2 3 =Ale v (x 2 x3 ) +A2¢/a2" [r2V (x 2 x3 ) + _(1) x2 x3--r ]

e a 4 x2x3 e a 2 x2x3+A 3 V ( 4 ) +A4 [r2V ( 4 ) + _(1) _'2x3_ --7- _r] (a)
r r r

(3.6.85)

--u(2)/'23 =ASe V (x2x 3) +A6/a 2. [r2V(x 2 x3) + e(2) x2 x3--r] (b)

(:) (2)
where u and u are the displacement vector fields in matrix and fiber,

respectively. Here A k k = 1,2,..., 6 are non-dimensioD_al arbitrary
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constants, V stands for the gradient operator, _r is the plane radial vector

with components x 2,x 3 and magnitude r, and the constants c_(1), 8(1),a(2)

are given by

(_(I) 2 (3-4'_i)=- (a)
3-2'_1

B (i) 2 (3-4_;I)= (b)
i-2,_1

(_(2) 2 (3-4,_Z)
.... (c)

3-2 _2

(3.6.86)

This solution was prompted by the material contained in Love [3.3 ] ,

chapter XI, and a related composite sphere solution which was constructed

in [3.11].

So far the present solution satisfies the differential equations (3.5.14).

If inserted into (3.6.84) and into (3.5.15) and (3.5.19) at r = a, there are

eobtained precisely 6 linear equations for determination of the constants A
k

k = 1,2 .... ,6. These equations may be written

$ $ ¢

Ck_A _ =d k k,_ = 1,2,...,6 (a) (3.6.87)

where Ck_ and d k are given in the table which follows.
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ck_

1 2 3 4 5 6

2
1 i/v v v 0 0

3-4vi 1 2 1
0 -2v -- v 0 0

3-2 vI v i-2_ 1

1 1 1 1 -i -i

3-4_ 1 3-4'_
0 -2 1 0 2

3-2v I i-2_ 1 3-2v 2

3 1 3

1 3_2v 1 -3 l_2v I -7 3_2v 2

1 1
0 2 0

3-2v I l-2v I

1

3-2_ 2

6

dk

1

0

0

0

0

'v 0

(b) (3.6.87)

whe re

v = (a/b)2 (a)

G 2

_(- G1 (b)

(3.6.88)

By the firsttransverse isotropy-isotropy analogy, par. 3.5. i, the

present solution is valid also for transversely isotropic phases. In this case

G 2, G 1 are to be interpreted as the phases transverse shear modul[ and the

Poisson's ratios _2 ' _1 are replaced by the last of (3.5.25).
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Computation of the strain energy in the composite cylinder is best

carried out by computation of the boundary tractions and evaluation of the

surface integral "T T, u. dS . We find that1 l

2(i-_1) , o 2
u' =zc it A ] V (3.6.89)
cn 1 l-2v I 4 (V2n) V2n ¢23 cn

where V is the volume of the composite cylinder,
cn

= /bn )2V2n (a
(3.6.90)

andA ¢ e in (3.6 87) computed for (3.6.88a)
4 (VZn) denotes the coefficient A 4

of value (3.6.90).

In view of (3.6.83) and (3.6.89) , (3.6.73) now assumes the form

2 2(i-v i)

_- o IV, +Z [ 1 A¢ (Vzn) ]Vcn 1U_ = 2_23 G1 n I-2_)1 4 Vzn (3.6.91)

If the FRM is transversely isotropic the actual strain energy is given in view

of (3.6.39) by

2
0 *

U¢=2¢23 G T V (3.6.92)

and it is recalled that G
T

has to be interpreted as (3.4.56) for square symmetry.

Because of (3.6.22), (3.6.91-92) now give the upper bound

* { 1 2 (l-v1) e } (3.6.93)G T < G I v' +-- F [1 A n) ]VcnV n i-2_ 1 4 (v2 V2n
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where v = V /V
cn cn

To construct a lower bound the cylindrical fiber reinforced specimen

is subjected to (3.4.22). The stress field aij

(3.4.23a) and W 1 in (3.6.74a) becomes

in (3.6.72a) is then given by

2
O

g
a 23

W - (3.6.94)
1 2G 1

Now the composite cylinders are subjected to the traction system (3.4.22).

On the surface r = b we have

X
o 3

T2 = c;23 b

o x2

T3 = a23 b

(a)

r : b (b) (3.6.95)

(c)

The solution of the composite cylinder under (3.6.95) is again of the form

(3.6.85). It is now written as

2G
1

O

23

u (1) a Az_/a2_ = A 1 v (x2 x3) + [rZv (xz x3) + a(1)xz X3L]

aa4V (
+A 3

x2x3 _(i) x2x3
x24x3 ) +A 4aa z [r2v(_4 ) + _4 _r ] (a)

r r r

(3.6.96)

2G
1

O

23

u(2) a v + A6/a2_ = A S (x2x3) • [r2V(Xz x3) + a(Z)x2 x3x ] (b)
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The boundary conditions (3.6.95) and the interface conditions (3.5.15) and

(3.5.19) at r = a now lead to the system of equations

A_ d kCk_ Z = k,_ = 1,2 .... ,6 (a) (3.6.97)

o and
where Ck_ d k are given in the table below.

1

4

(I
C

k_

2 3 4 5 6

3 1 2 1
-3v -- v

3-2v 1 v 1-2v 1
0 0

1 1 2 1
2v

3-2v I v l-2v 1
v 0 0

1 1 1 1 -i -i

3 -4v 1

0 - 3_2v i -2

3-4v
1 0 2

1-2 _ 1 3 -2 v 2

3
1 -3

3-2_ 1

1 3

1-2 vI -% 3-2 _)2

1 1
0 2

3-2v I

1

l_2v I 0 3_2v 2

d k

0

(b) (3.6.97)

0

where vand % are given by (3.6.88).



239

It is to be noted that (3.6.95a) is only satisfied in the Saint Venant

sense by the solution, which is of no consequence for a long cylinder.

See par. 3.5.1 for discussion.

Now the stress energy in any composite cylinder is found to be

2
O

2(I- l)23
u - [:+
cn 2G 1 1-2 _1

(J

A4 (V2n) V2n ] Vcn
(3.6.9 8)

O" (7

where V2n is given by (3.6.90) and A 4 (V2n) denotes the constant A 4 in

(3.6.97) computed for v = V2n.

Insertion of (3.6.98) and (3.6.94) into (3.6.74) gives U If the

FRM is transversely isotropic or square symmetric it follows from (3.4.23a)

and (3.6.40) that the stress energy is

2
O

23
U - . V

2G
T

(3.6.99)

where G is to be interpreted as (3.4.56) for square symmetry. Insertion of
T

(3.6,99) and the previously computed _e into the extremum principle (3.6.36)

yields the following lower bound for G T

-1

{ v' + IV__ 2(1-Vl) o } *Ol r [i +n 1-2v 1 A4 (V2n) V2n ] Vcn < G T (3.6 100)

We now apply the bounds (3.6.93) and (3.6. 100) for special cases.

For square and hexagonal arrays as shown in fig. 3.6.2 V2n and v• cn

all the same. It is seen from (3.6.76) and (3.6.90) that now

are

V2n =vzc =v2/v c (3.6.101)
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where it is recalled that v2 is the fibers volume fraction relative to the

composite and v is given by (3.6.75). Since V is the volume of a
c on

composite cylinder, we have

NV
Nv = cn

cn V - Vc

v' = l-v
C

where N is the number of fibers.

and (3.6. i00) we obtain

(3.6.102)

Inserting (3.6.101-102) into (3.6.93)

G

-1

1 1 + 1_2_)1 A 4 (V2c)V 2 < G T <G 1 1 1_2_;1 A 4 (Vzc)V 2
(3.6. 103)

For the composite cylinder assemblage V2c in (3.6. 103) becomes v 2 , (3.6.82b).

We then have

G

-1

Tc.(_)= G 1 1 + l_Zv I A 4 (v2)v 2 <GTc G 1 l_Zv I A 4 (vZ)v 2

These are the bounds which were given in [3. i0].

9:

= G Tc (+)

(3.6. 104)

It may be noted that the bound expressions (3.6. 104) can be obtained

in the following fashion. Let a single composite cylinder of the assemblage

be subjected to the displacement boundary conditions (3.6.84). Then
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, a23

G Tc (+) 2 ¢o
23

(3.6. 105)

where the overbar denotes average over the composite cylinder. If

the composite cylinder is subjected to the traction boundary conditions

(3.4.22), then

o

* 23
- (3.6. 106)

GTc (-)

2 ¢23

It is of some interest to note that the bounds (3.6. 103) can now be

expressed in a different form. If the bounds (3.6. 104) are denoted G(+)(v 2)

and G(_)(v2), respectively then (3.6. 103) assumes the form

-1

F l-v ,v ] , _+)(v2L _ G +G )v
c + c < GT 1(l_Vc)

G1 G (_)(V2c)
c c

(3.6. i07)

which resembles the results (3.6.78-_0).

The system of equations (3.6.87) has recently been solved alge-

c Insertion of this result into the upper bound (3.6. 104)
braically for A 4 .

yields the explicit expression (3.5.113) in par. 3.5.3 for GT(+). No doubt

the lower bound in (3.6. 104) can be similarly simplified but this has not

been done since for fibers stiffer than matrix this bound is superseded by

a better lower bound which will be derived in par. 3.7.3. This better

lower bound is (3.5.114) , par. 3.5.3.
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The results (3.6.78-<J0), (3.6.81), and (3.6. 103) provide bounds

for five effective elastic properties. Bounds on other EEM can be derived

in terms of these. To find bounds on E T , for example, it is easily shown,

in general, by use of (3.4.82)and (3.4.84)that

, 4k (+)GT (+) (a)
ET (+) = . .

k (+)+ m (+)GT (+)

* 4k(_)GT (_)

ET (_)= . . (b)

k(_)+m(_)Gq (_)

(3.6.108)

where

2

4k v

m(+) = 1 +,, (+).A(-) (a)

EA(+)

2

4k(_)_)A
m(_)=l+ . (+) (b)

EA(-)

(3.6. 109)

and the bounds in right sides of (3.6. i08-i09) are any bounds.

For the composite cylinder assemblage k , E A and v A are known

and therefore the bounds (3.6.105-106) reduce to (3.5. 120).
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3.7 BOUNDING METHODS FOR EFFECTIVE EIASTIC MODULI: POLARIZATION

EXTREMUM PRINCIPLES

3.7.1 Elastic Polarization

In par. 3.2.3 we have formulated the elasticity problem of hetero-

geneous bodies in terms of displacements. The problem may also, though

inconveniently, be formulated in terms of stresses as has been shown in

par. 3.6.2. It is our present purpose to formulate the elasticity problem of a

heterogeneous body in terms of two new variables: the elastic polarization

tensor and a displacement deviation. These will be defined further below.

Consider two elastic bodies of identical external geometries which

S
are subjected to identical surface displacements, ui . The firstbody is

homogeneous anlsotropic with elastic moduli C °
ijkl" The second body is

heterogeneous anisotropic, composed of any number of homogeneous

(m) in the mth
anisotropic phases with elastic moduli Cijkl phase. For

convenience the firstbody is called the C ° body and the second is called

the C body.

C 0 0 0
The elastic fields in the o body are denoted u i ' • lj' o iJ while

the fields in the C body are denoted u.,x¢tJ' °iJ assuming the values u(_ ),

(m) o (m) in the m th
e iJ ' ij phase. We summarize the elasticity problems of the

two bodies for the case of zero body forces:
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C ° body

0
= 0 (a)

tj ,j

0 0 0
= C _ (b)

tj ijkl kl

= __ 0o I (uo +u..) (c)
cij 2 t,j ],t

o S
u. (S) = u (d)
t i

(3.7. l)

C body

a = 0 (a)
tj ,j

(_ij = CijklCkl (b)

1

_t] 2 (u. +u (c) (3 7 2)" t,j j,i " •

U.

t

continuous on S int

(d)

T. = _ n = Cijklt ij j _l nt (e)

u. (s)=uS. (0
]. I

Equs. (3.7.2a,b,c) apply for each phase separately and all quantities

may then be given a superscript m.
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We now define the stress polarization tensor Pij by

= C ° + (a)
aij ijkl _ kl Pij

(m)(_(mL o (m) + p , (b)
l] - Cijkl e kl i]

(3.7.3)

th
where (a) is a general definition and {b) is an explicit expression for the m

phase. The polarization may be interpreted as the necessary correction if

it is erroneously assumed that stress and strain in the C body are related

by the stress strain law of the C ° body.

u i ,
# #

Next we define the deviating fields ¢ij' g'.j_ as

o
u' = u - u (a)

t z i

o (b) (3.7.4)
ij ¢ij e ij

o
g# = _ - g (c)
ij ij ij

It follows from (3.7. lc-2c) and (3.7.4b) that

1

e'ij 2 (uil,j + u'.],l ') (3.7.5)

from (3.7.1a-2a),

c_'ij ,j = 0 (3.7.6)
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from (3.7.1b), (3.7.3a) and (3.7.4c),

, 0 , + 0 ,

oij = Cijkl _kl Pij = Cijkl Uk,1 + Pij
(3.7.7)

Insertion of (3.7.7) into (3.7.6) yields

o , + Pij),j o ,(C ijkl _kl = C ijkl Uk,lj + Pij ,j = 0
(3.7.8)

We replace in (3.7.3) the left side by (3.7.2b); we then have

O

Pij = (Cijkl - C ijkl )¢kl
(a)

(3.7.9)

O

_ij ¢ ij + e'.. (b)t] Hijkl Pkl

where Hijkl

0

is the inverse of Cijkl - C ijkl
The relation between these two

tensors is written both in matrix and subscript notation

C'rskl = Iijkl_H ' C' =I Hijrs (a)

__C' _C _c° , = o
= - Crskl Crskl - Crskl (b)

(3.7. i0)

0

where_I or Iijkl is the fourth rank unit tensor (3.2.7). Since Cijkland Cijkl

are elastic moduli tensors they obey the symmetry conditions (3.2.3) and thus

C_j Iijkltheir difference kl obeys the same symmetry. The tensor obeys these

symmetry conditions by definition. Therefore Hijkl also has the same

symmetry. Thus

Hijkl = Hjikl = Hijlk = Hklij (3.7. ll)
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In view of (3.7.11), (3.7.9) can also be written in the form

o , o + 1 'i ul¢I] +ell =_I] -_(u + .) =H (3.7.t2)..... ,j ] ,1 ijkl Pkl

Equations (3.7.8) , (3.7.12) are 9 differential equations for the 9

quantities u'i and Pij They may be taken as the governing differential

equations for the C body if the solution for the C ° body is known.

For a multiphase body (3.7.8) and (3.7.12) have to be written for

each phase. All quantities in these equations, except those with zero

(m) is given by
superscript, are then given a superscript m. The meaning of H ijkl

H (m) (C (m) o
ijrs rskl - Crskl) = Iijkl

(3.7.13)

To complete the formulation of the problem in terms of u' and p
i i]

have to consider the boundary and continuity conditions (3.7.2d,e,f). In

view of (3.7.1d), (3.7.2f) and (3.7.4a)we have

we

u'. (S) = 0 (3.7.14)
1

as the boundary condition.
0

Since u. is continuous at interfaces and u
i i

is

continuous everywhere, the difference u'. is also continuous at interfaces,
I

O
Similarly, _.. n and o

i] j ij
n are continuous at interfaces and so their difference
J

_'.. n. is also continuous there. This difference is expressed in terms of u'.
l] ] i

and p.. by (3.7.7). Thus (3.7.2d,e) are replaced by
1]
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U I '

1

C°jkl u'T' = + p..) n.
i k,l i] ]

J

continuous on Sin t

(a)

(b)

(3.7. iS)

It is seen that the elasticity problem for a heterogeneous C body has

been formulated in terms of u' (m) and p(m)..
i z]

which satisfy (3.7.8) and (3.7.12)

in each phase, the boundary condition (3.7.14) and the continuity conditions

(3.7.15).

Next we derive an interesting formula which expresses the strain

¢ 0

energy U of the C body in terms of Pij and ¢ij

of the C ° and C bodies are, respectively,

The strain energies

o /o o2U = °ij ¢ij dV

V

(a)

(3.7.16)

2U ¢ = /gij ¢ij dV

V

(b)

In view of (3.7.16a) and (3.7.4b,c), (3.7.16b) can be written as

/2U ¢ = 2U ° ij ¢ij dV + _ij ¢' dV1]
V V

(3.7.17)

Consider the last integral in (3.7.17). Because of (3.7.2a,e), (3.7.5)

and (3.7.15), the theorem of virtual work is valid. Thus
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cYij¢' dV = ! T u' dS 0

f

ij .J i i

V V

which vanishes because of (3.7.14). Now consider the other integral in

(3.7.17). Because of (3.7.7)

o' ¢ dv = ' e ij dVij ij ekl ij

V V V

Because of ij, kl symmetry

CO ¢kI 0ijkl ¢ ij dV =

V

/C_jkl ¢,ij o dV= / o ,¢ kl ij eij dV

V V

where the last step is due to (3.7.1b). By (3.7.1a), (3.7.5) and (3.7.15a)

the theorem of virtual work applies to the last integral. We have

/°°j ¢'ijdV= / T°i u'i dV= 0

V V

because of (3.7.14). Introduction of all of the preceding results into (3.7.17)

yields the remarkable expression

¢+ 1 /o_2, ij ¢ i / (m)o2_ ij ijue = Uo Pii e dV = U + Em p e dV (3.7.18)

V V

This was first derived by Eshelby [3.27] . The extreme right side follows

if the continuity condition (3.7.15b) is satisfied at interfaces.
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3.7.2 Polarization Extremum Principles

We shall now derive an extremum principle which is a variational

formulation of the elasticity problem for the C body as expressed by (3.7.8),

(3.7.9) or (3.7.12) and (3.7.14-15). This extrernum principle was first

derived by Hashin and Shtrikman [3.28]. Another derivation was subsequently

given byHill L3.29], starting out from the classical extremum principles

of par. 3.6.2. The present straightforward derivation follows a method

used in [3.30] . As in our derivation of the classical extremum principles

in par. 3.6.2 we shall again use finite differences rather than variations

of fields.

We define admissible fields u.'(m)and _..(m) by the requirement that
l []

they satisfy (3.7.8) (in each phase) and (3.7.14-15), but not (3.7.9).

Thus the last equation will assume the role of extremum condition. Accordingly,

Uk,l" + Pij, ,j = 0 in Rm (a)

we have

ul (S) : 0 (b)
1

u' (c) (3.7.19)
1

continuous on Sin t

j(C°'uklUk,1 + Pij) n,] (d)
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where

,_,,(m) = _=l i"_" (m)
ij 2 " i,j

+U '(m) )
j,i

(e)

We define the differences

h u'(m) _-,(m) u' (m)
, _ U 0 -- ,

1 1 1

Ap(_j ) =Fil m)- p(_j)

(3.7.20)

where u '(re) and p(m) are the actual fields which also satisfy (3 7.9) or (3 7 12)
, ,, • • • •

1 lJ

Subtraction of corresponding equations in the group (3.7.8), (3.7.14-15) and

the group (3.7.19) yields in view of (3.7.20)

,(m) (iT)) =o (a)o ,(m) + (m) = (C° ' e + Ap
Cijkl A Uk,lj APij,j _]kl A kl ,J

Au' (S) = 0 (b)
[

A u'._ t (c) (3.7.2 i)

continuous on Sin t

(c°' 'l]kl A ¢ kl n, (d)

where

A_ '(m)= _ (Au '(m) + Au'!m!) (e)
ij 2 i ,j ], 1

In view of future derivations it is convenient to rewrite (3.7.19a ,d)

and (3.7.31a,d) in the following forms
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o -_,(m) +_ =t(_j)C fjkl kl ij
(a)

t(m) = 0 (b) (3 7.22)
l],1

t (m) n continuous on Sin t (C)
tj j

o ,(m) (ira) B t!m) (a)O ijkl A + h p =e kl 13

At(m) = 0 (b) (3.7.Z3)
ij ,j

At(m)..n. continuous on S (c)
13 ] int

th (m)
Now (3.7.9) , written for the m phase, is multiplied by Ap ,

ij
th

then integrated over the m phase volume and the resulting integrals are

summed over all phases. The result is

_1 o p(m)F (-H (m) ) hplm) + e,(m) hp(m) + e.. A ) dV : 0 (3.7.24)rn i j k 1 p ij lj 11 ij

V
m

(m)

Consider the middle integral in (3.7.24) and substitute for Ap ij

from (3.7.23a). Then
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mE / ¢'(m)hp!m)dV=Z/iji] m

V V
m m

c'(_)1] coijklA¢'(_l))dV (a)

(m) /Z u' (re)At n. dS - _.
m i ij ] m

S V
m m

A¢'(m) o e,(m)C ..
ij ukl kl

dV (b)

=-Z
m

u'At n dS-Z
i ij j m

(m) (o,(m) _ p(m) ) dVh e'ij ij U

V
m

(c)

(3.7.25)

hu,.(m) o,(m) + [ A ,'(m)p(m) dV (d)dSn E
ij j m J ij 1]

S V
m m

/-

S

(m) (m) ¢__Au'. o'. n. dS +E A_'" " p dV _J
i] ] m U 1]

V
m

,(m) p(m) (f)E Ac .... dV
m U i]

V
m

Here the conversion to surface integral in (b) follows from the theorem of virtual

work which is valid because of (3.7.21e) and (3.7.23b). The interchange in the

0

volume integral in (b) is permissible because of C [jkl symmetry.
The interface

surface integrals in (b) cancel because of (3.7.15a)and (3.7.23c)and so

only the integral over S remains tn (c). The volume integral in (c) is obtained by
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fro,k{) from (3.7.8) in (b) The surface integral in (c)
O

substituting for Cijkl ¢'

vanishes because of (3.7.14). The first volume integral in (c) is converted

to the surface integral in (d) by virtual work in view of (3.7.2 le) and (3.7.22b).

The interface integrals in (3.7.25d) cancel because of (3.7.21c) and (3.7.22c).

Thus there remains the external surface integral in (e) which vanishes because

of (3.7.2 lb).

Define the integrals

1 / ¢,(m) p(m) dV (a)U'- 2 Em ij ij

V
m

U'- 2 Zm .I -$,!m)p(m).,dV (b)U U
V

m

(3.7.26)

The difference between these integrals is in view of (3.7.20) and (3.7.21e)

AU' = U' - U' = A(I)U' + A(2)U' (a)

f (m)= _- r_ (A,'(m) )+ ', Ap dV (b)ij P ¢i1

V
m

(3.7..27)

1" (m)
- _mJA1 , (m) h P dV (c)A(2) U' 2 e ij ij

V
m

In view of the equality of the first and last terms in (3.7.25), we have from

(3.7.27a)
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1 f (m)2-"_m _;j(m)A Pij

V
m

i ,%(1)u,dV = --
2

Substituting this into (3.7.24) it is seen that the resulting integral

can be interpreted as ,%(1)Q where

,%Q =_ _Q = A(1)Q +,%(2)Q (a)

f l?k ) _ (iT _ (m) o1 ( ) o(m) +p ) ,(m) +zp .. e.. ) dV (b)
Q =-,_-_ (-H 1 p "-kl " e ij I] 13

V
m

(3.7.28)

-_ 1 f (m)ijkl_(iT ) '' (m) ' _ (m)'_' (iT) + 2_ (m)°ij £j ijQ= _-- _ (-H P kl * _ ) dV (c)

V
m

and (3.7.11) has been used. So from (3.7.24)

_(1)Q = 0

For reasons of convenience and without loss of generality the known

strain energy U
O

of the C °body is added to (3.7.27b,c). Thus

C+Q =Ue- 1 fU=Uo o -Y Zrn
V

m

(m) (m)
ij kl p ij )

(m
H P kl o,, ¢ ,,)dV

U i]
(a)

"" ¢ +_ = U ¢ 1 _ / . (m) ,_'(m),_,U = U ° o - 2"- (Hijkl ij kl

V
m

AU = U- U = a (1) U +,%(2) U

~_'(i7)-2" _'_(m) 0- ¢..')dV
Pij ij 13

(3.7.28)

(c)

(b)

A(1) U = 0 (d)
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The expression (3.7.29a) can be greatly simplified. We first observe

that itcan be written in the form

¢ + 1 / (m) ¢o dVu=u ° Tzm Ptj tj
V
m

- Y Zm ijkl pkl -
V

m

o p(m)¢, ) ,, dV
i] i]

(3.7.30)

It is seen that the parenthesis in the last integral in (3.7.30) vanishes in

each phase because of (3.7.9). We thus have

1 / (im) o dV=U¢
e + (3.7.31)

u = u ° -_ _ P _ ij
V

m

the last equality in (3.7.31) following from (3.7.18). It has thus been shown

that U is the strain energy of the C body.

We shall call (3.7.31) and (3.7.29) polarization strain energy and

polarization strain energy functional, respectively. So (3.7.2 9d) asserts that

the first difference of the polarization strain energy functional vanishes.

We now examine A(2)U in (3.7.29c). We have from (3.7.29a,b)

mj (m))1 (m) Ap( ) h_(m) _ ip(m) A , . dV (3.7.32)_(2)U - 2 _m (H ijkl _ kl ij 1]

V
m

In order to establish an extremum principle for U we have to examine the sign

of (3.7.32). It will be shown that
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A(2)O < 0

A(2)O > 0

(m)_. (m) o
C' ijkf-_ijkl- Cijkl

C' (m) _ (m) o
ijkl= (5ijkl- Cijkl

positive definite (a)

(3.7.33)

negative definite 03)

To prove (3.7.33a) we substitute for h p!m) from (3.7.23a) in the
U

second term in the integrand of (3.7.32), obtaining

A(2)U_ 1 / (m) &p!.m)_ (m)+ o A¢,(m) A ,(m)2 _ (H ijkl t] aPkl Cijkl ij kl

V
m

(m)- (3.7.341
i} 1]

The last integral in (3.7.34) vanishgs by virtual work (by use of (3.7.23b,c)

and (3.7.21b,e)). It is seenthat the middle term in (3.7.34) is positive

0

because Cijkl is positive definite.

(m) is positive definite so in that event (3.7 34) is negative.
H ijkl ' "

,(m)_ (m) and C am inverses of one another, (3.7.13).
matrices n ijkl ijkl

if _,(m) is positive definite so is C '(m) This proves (3 7.33a).
n ijkl ijkl "

To prove (3.7.33b) we first cons ider the integral

The first term in (3.7.34) is positive if

Now the

Ac cord in g ly

0:. / sOm kl

V
m

o by (3.2 6-7)
where S ._kl are the compliances, related to Cij kl " "

substitute for Ap! m) A (m) from (3 7 23a), obtaining
l] ' P kl " '

(3.7.35)

Aga in we
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m (Sijkl At( ) At +Cijkl A¢' A¢ "kl

V
m

(m)
- 2 )dv

i] U

(3.7.36)

The last integral in (3.7.36) again vanishes by virtual work and it is seen

that the remaining two terms in (3.7.36) are each positive definite. Therefore,

if the first term in (3.7.36) is omitted the whole integral is decreased and

thus becomes smaller than (3.7.35) . Accordingly

Z / o (i?) .(m)ap f o ¢,(m) ¢,_1)m Sijkl Ap dV > _. A A dVkl -- m Cijkl ij

V V
m m

Using this result in (3.7.34) we have

1 f . (m) + o (m) A (m) d vA(2)U_<- -_- Em ., (Hijkl Sijkl ) A Pij Pkl (3.7. 37)

V
m

(m) + S ° be negative definite.To ensure that A(2)U be positive we require that H ijkl ijkl

To show that this condition is equivalent to (3.7.33b) it is best to operate with

(m) +S °
matrices in symbolic form. Let the matrix of H ijkl ijkl be written

A = H (m) + S °

It follows from (3.7.10), (3.7.13) and the definition of compliance that

I _I
nu

A_ (m) o o
c -_c _c

The n

(m) _ C °) .C ° .A = c(m)
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(m) o
Now since G and __O are positive definite it follows that if A_ is negative

definite then _C(m) - _C° is also negative definite and vice versa. Therefore,

if_C (m) - C° is negative definite the right side of (3.7.37) is positive. This

proves (3.7.33b).

In view of (3.7.29c,d), (3.7.31) and (3.7.33) we have the following

extremum principles

U < U I_)i (m) oC' = C ijkl - Cijkl
positive definite (a)

(3.7.38)

--, (m) o
U > U ¢ C'. (m) = C - C negative definite (b)

-- tjkl ijkl ijkl

In words: The strain energy of the C body is the maximum/minimum of the

polarization strain energy functional when the elastic moduli difference matrix

,(m)
C"ijkl is everywhere positive/negative definite.

The bounding of the strain energy U ¢

(m)
extremum principle proceeds as follows: An admissible polarization tensor p ij

is chosen at will. Then p!m), may be regarded as the "input" in (3.7.19) and
11,1

u '(m) as unknown functions ("output") to be determined. It is seen that (3.7.19)
t

ts an unusual elasticity problem for the homogeneous O ° body in which _(m)
_' tj ,j

_(m) . .19d) is discontinuous
are "body forces" and the "traction" C._k I kl _ in (3 7

at phase interfaces, if p.. n. is discontinuous there.
1] ]

is easily shown that for any choice _Pij there is a unique u'.l ForIt

assume that there are two different u'. satisfying (3.7.19) with same p..
1 1]

Then by subtraction and linearity the difference between these two u. satisfies
1

(3.7.19) with zero Pij" But this is a usual elasticity problem with zero boundary
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values and zero body forces and, therefore, its solution vanishes. So the

assumedly different u'. are the same.
1

Once u'. has been determined in terms of p.. the integral (3.7.26b) can
l I]

be computed and is then carried back into (3.7.29b) and so U provides

bounds on U _ because of (3.7.38). If the boundary conditions (3.7.1d),

(3.7.2f) are homogeneous of form (3.3.1), then U ¢ is expressible in terms

O ,-,
of EEM and e , (3.3.14), and thus bounds on the EEM in terms of p.. and

tj t]
0 "" 0

Cijkl may be obtained. The Pij and Ctjkl are then determined by

optimization of the bounds.

This procedure will be illustrated in the next paragraph for fibrous

materials.

A dual set of extremum principles in terms of strain polarization has

been derived in [3.283 . Additional extremum principles in terms of the

polarization tensor have been derived in [3.303.

The extremum principles which were derived are now resummarized:

An elastic homogeneous (C ° ) body with elastic moduli C °
ijkl and an elastic

_ (m)
heterogeneous body (C) body with phase elastic moduli Gijkl are of

identical external shapes and are subjected to the same boundary displacements

on their entire bounding surfaces. Define the functional

~ , , /.(m> _(m)_(m) ,_(iT)-_,.!m > 2P(im> o.... ,..) dV (3.7.29b)
U = U ° 2 Em (H ijkl ij kl l] t}

V
m
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£
U

0
- strain energy of the C ° body

O

e tj
- strain field in the C ° body

(m) (m)
H ijrs (C rskl - C°skl ) = Iijkl

(3.7. t3)

,_,(m) = 1 (u' ....(m)+ u' (m))
t] 2 t,] ],t

(3.7.19e)

The admissible fields "p (m).. and u '(m)
t] t

value problem

are related by the boundary

o -_,(m) +_,(m) = 0 inR (a)
C ijkl Uk,lj ij ,j m

u:
t

u,(S) = o (b)
1

o(C ijkl 1/'k, 1 j) nj

continuous at Sin t

(c)

(d)

(3.7.19)

Let U e be the strain energy of the C body. Then

-_ (m) _ C O
U < U e if C ijkl ijkl

> U e if tjkl - COc(m) tjkl

positive definite (a)

negative definite (b)

(3.7.38)

"_ (m) isthe actual polarization p(m) and
Equality occurring ifand only ifp ij ij

_[(m) is the actual displacement difference u'(m), between the displacement
• i '

fields in the C and C ° bodies.
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3.7.3 Bounds for Fibrous Materials

We now proceed to use the polarization extremum principle to bound

the EEM of macrescopically transversely isotropic FM. We shall first

W W "k 9¢

establish bounds for k and G Bounds for E and v are then easily
T A A

9¢

constructed, inter-ms ofthe k bounds, by use of (3.6.66), (3.6.68), (3.4.117)

and (3.4. 118).

A separate treatment is necessary to establish G A bounds.

We choose as the C ° body a transversely isotropic homogeneous

cylinder of volume V, surface S and sectionA. This cylinder is henceforth

O

called the C cylinder. The axis of elastic symmetry of the material is in

generator direction and the elastic moduli are n
0

(see (3.4.86)).

,k ,G ,G
o o To Ao

We choose as the C body an externally identical cylinder of fibrous

material, which is assumed to be macroscopically transversely isotropic

with elastic symmetry axis in generator direction. This cylinder is called

the C cylinder. We shall assume for simplicity that the phases are isotropic,

bearing in mind that results for transversely isotropic phases are immediately

obtainable from the isotropic phase results by use of the transverse-isotropy

analogies which were described in par. 3.5.1. The variable moduli of the C

th
cylinder are taken as k=k+G and G assuming the values k and G in the m

m m
th

phase. The volume fraction of the m phase is denoted v
i71"
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We are primarily interested in the two phase cylinder, but since the

major part of the analysis is just as conveniently carried out for a mult[phase

cylinder we do not at present specify the number of phases.

Let the C ° and C cylinders be subjected to the homogeneous displace-

ment boundary conditions

S
uI = 0 (a)

S o o

u 2 = e22 x2 + ¢23 x3 (b) (3.7.39)

S o o

u3 = ¢23 x2 + ¢33 x3 (c)

It is seen that (3.7.39) is a special case of (3.5.3). Inview of (3.7.39a)

both cylinders are in states of plane strain.

o o o C °The fields u., ¢ and .. in the cylinder can immediately be
1 ij 1]

o
written down since u .(x_) has the form (3.7.39) throughout the cylinder.

1

o o
Consequently ¢ and c_ are homogeneous. It is convenient to separate

ij ij

strains and stresses in the x2 x3 plane into isotropic and deviatoric parts

as was done in (3.4.69) and (3.4.71) for averages. We then have

o eo6a8o (x) = _ = + o
' 0_$ 0L8 e cL$ (a)

e° 21 e° 1 (¢22° + ¢33 ) (b) (3 7.40 )yy 2

o o o

¢11 ¢ 12 e13 = 0 (c)
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0 0 0 0

(x) = _ = o 6_B + s (a)aB - aB aB

o 1 o
o = -- o (b)

2 '/_

0 0 0 0

a = 2k ¢ S = 2G e (c)o aB o aB

(3.7.41)

0 0 O 0

C_ll =2_oe o12 = o13 = 0 (d)

a,B,y =2,3

In view of (3.6.44a) and (3.7.40-41) the strain energy U

in the C ° cylinder is

stored
O

2
0 0 0

= (2k ¢ +G e e )A (3 7 42)
U o o o aB c_ " "

per unit height of cylinder, where A is the section area and G is a
O

simplified temporary notation for GTo.

The fields u and (_ in the C cylinder subjected to (3.7 39) are
C_ (_

determined by the formulation given in par. 3.5.1 which reduces here to a

plane strain problem. It follows from (3.5.9-12) that

u I=0 ua=ua (Xz,X3) (a)

¢I i ¢12 ¢13 = 0 ¢ = ea (b) (3 7.43)a B B (x2' x3)

o12 = o13 = 0 ' °11 _ 0 , oaS = °aB(x2' x 3) (c)
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We consider (3.7.9) for the present case. Here Cijkl represent the

local phase moduli in the C cylinder and Co - the phase moduli of the
ijkl

transversely isotropic C° cylinder. Consequently (3.7.9) has the form of a

transversely isotropic stress-strain relation (see 3.4.86). In view of (3.7.43)

we have

= + (a)Pll (¢22 ¢33 )

P22 = (k'+G') e22 + (k' -G') ¢33 (b)

P33 = (k' -G') ¢22 + (k' +G') ¢33 (c) (3.7.44)

P23 = 2G' e23 (d)

= p = 0 (e)
PI2 13

where

_' = _- _ = k- _ (a)
0 0

k' = k - k = k+G- k (b) (3.7.45)
O O

= G (c)
G '= G - G o - GTo

In view of (3.7.43b) the Pij are not functions of x 1.

It is convenient to separate the polarization and strain components

in (3.7.44b,c,d) into isotropic anddeviatoric parts. Thus
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PaB = P6a8 + qaB (a)

1

p = _- p (b)77

(3.7.46)

_aB =''8 _+ e I_ (a)

1 (b)

(3.7.47)

Then (3.7.44b,c,d) assumes the same form as (3.7.41c)

p=2k'¢ (a)

qa8 =2G'ecz8 (b)

(3.7.48)

We now proceed to evaluate a functional of type (3.7.29). In view of

(3.7.9b) it is seen that

Hijkl Pij Pkl = Pij ¢ij

Because of (3.7.43b) and (3.7.44e) the summation extends only over 2,3

and thus reduces to Pc_B ea[_ " Using (3.7.48) we have

2 qasqaB
_ P +

Hijkl Pij Pkl k' 2G'
(3.7.49)

From (3.7.40c), (3.7.43) and (3.7.4) we have that

, _'
Pij e ij = Pc_ B a[_

O O

Pij ¢ij = PaB eo_8

Again w_ separate into isotropic and deviatoric parts to find the expressions
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e' = 2pe '+ e'
Pij ij qctB a_

(3.7.50)

0 0 0

Pi] etj =2pe +qa_ e' aB

We now use (3.7.49-50) to write down the functional (3.7.29a). It is

seen that the integrands are functions of x 2, x 3 only. Therefore, volume inte-

gration can be replaced by area integration over the section h. We have

p(m)2 (m) (m)

e 1 f q a_qc_8u:u':Uo -T Zm ( k' + 2G'
m m

A
m

(m) , (m) _ 4p(m) ¢o _ 2.,(m) e o- 2p(m) e'(m) - qa$ e c_B uc_ _) dA (3.7.51)

where U and U
O

are strain energies per unit height of C and C ° cylinders,

respectively, A are the phase areas, and k' and G' are (3.7.45b,c) for
m m m

k =k and G =G , respectively. Because of (3.7.39), (3.7.40), (3.4.70)
m m

and (3.3.26) the strain energy per unit height of C cylinder can also be

written a s

9:

U "= (2k

2
O * O O

e +G T e 8 eaB)A (3.7.52)

The EEM k and G
T are the quantities which are to be bounded and for that purpose

we shall bound (3.7.51) by use of admissible fields.
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It is recalled that admissible polarizations p.. and admissible displace-
t]

ment deviations u'. must satisfy (3.7.19). In order to incorporate as many
t

features of the actual fields as possible in the admissible fields we choose

P12 = P13 = 0 'P'll = 'P'll (x2'x3) P_.B = P_B (x2'x3)

(3.7.53)

u_ "" (x 2 ,x 3)
= 0 u' -=u'

Q. a,

0

Since C ijkl
is, by hypothesis, transversely isotropic and because of

(3.7.53), (3.7.19a) assumes the form

_,(m) u' (m) (m)k +G +p = 0 (3 7.54)
oUB,Bc o c ,BI3

m each phase. The u. differential expression in (3.7.54) has the same form as
l

(3.5.14), for obvious reasons.

The rest of (3.7.19) assume the form

u' = 0 on C (a)
Ct

u'
0c (b)

(ko- G ) ' n + G (u'(_, + ' c) n B + po uB,B _ o B us, &[_

(c)

] (3,7.55)

continuous

on Cin t

It is seen that (3.7.54-55) is similar to the plane strain formulation of

par. 3,5.1. In the present case there are "body forces" p&[_8
Equ. (3.7.55c)

replaces traction continuity (3.5.19) It is seen that the first two terms in
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(3.7.55c) have the form of a traction expressed in terms of ul displacement
1

gradients. In general, Pa8 n8 is not by itself continuous at the interface

and, therefore, the "traction" is also discontinuous.

The functional (3.7.29b) can now be written down at once by replace-

ment of actual fields in (3.7.51) by admissible fields (compare (3.7.29a)

and (3.7.29b)). We have

"- ¢ 1 / 'p' (m)2 "" (m)'-- (m)q a. sqa8 4_,(m) oU=Uo-7-Zm ( k' + 2G'
m mA

m

,,"(m) e o '_,
-'qaB a_)dA+

"_ 1 / (m)_,(m) -- _, (m)u'=_-_ m (25" +q_B _)dA=
A

m

(a)

(3.7.56)

1 f" (m) _', (m)
7- ZmJP_ _B da (hi

A
m

-(m)
We now choose paB to have different constant values in each phase.

Thus, Pa_ is ptecewise constant in the C cylinder. Then all terms in (3.7.56)

except U' can be readily computed. Assuming now that there are two phases

we have

2
"_ O O O
U = (2k e +G e e )A-

o o aB a_

1 P 2 + qa_ qaBvl qa_ qa_v2

2 [ kl-k + k2-k 2(G -G O) +o o 1 2 (G 2 -G o)

]"_ O "_ O

- 4p e -2qasea8 A+U' (a)
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~ (1) ~ (2)
p = p v 1 + p v 2 (b) (3.7.57)

w

= -_ (1) + -/" (2) v2_a_ qaB Vl _ aB (c)

The computation of U' via the boundary value problem (3.7.54-55) for

the present choice of P(z B and two phases is given in the appendix to this chapter.

The result is

~ F (i)).2(_(2)
2U' = [a - +bo(_(2 ) _(i). (_(2) _ _(1))]Vl v2 A (a)0 CZB- q C_ CL8 CL8

1
a - (b) (3 7.58)
o k +G

o o

k + 2G
o o

= - (c)
bo 4G o (ko +G o)

It is seen that (3.7.57-58) provide an expression for U in terms of arbitrary

piecewise constant polarization components and arbitrary elastic moduli of

the C ° cylinder.

In order to examine the present meaning of the extremum conditions

, = _ C °
(3.7.38) we realize that the matrix of Cijkl Gijkl ijkl is now given by

the moduli differences in (3.7.44). To examine positive or negative definite-

ci,ness we form a strain energy type expression kl eij Ckl and examine its

sign. Recalling that ell = 0 we have from (3,7.44) and separation of _ocB

into isotropic and deviatoric parts
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2

C[j = 'kl ctj * kl 2 (2k' _ + G e0_B e _ )

Since all the strains appear squared, positive definiteness is ensured if,

and only if, k' and G' are non-negative while negative definiteness is

ensured if, and only if,k' and G' are non-positive. Recalling the definition

of k' and G' by (3.7.45b,c) we have from (3.7.38)

U -> U c k I, k2 ->ko GI' G2 -> Go (a)

(3.7.59)

, k2 -< k G 1, G Z _ G (b)U s U e k I o o

To find the best bound on U with the present polarization choice

--_ --.(m) (m)
we minimize U as given by (3 7 57-58) with respect to p andq

• " CtB

when (3.7.59) is fulfilled and we maximize when (3.7.59b) is fulfilled.

Both extremum conditions are thus found by setting the derivatives of

(3.7.57-58) with respect to polarization components equal to zero.

Thus, the common extremum condition is

P (m) -. ,_ c°+ a (p (m) _ P ) + 2 = 0
k -k o
m o

2 (Gm-G o)

+b (_(m) " o
O (_8 - qc_8 ) + e(_B = 0

re=l,2

(a)

(b)

(3.7.60)
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Computation of second derivatives of (3.7.57-58) easily shows that

(3.7.60) are maximum conditions for (3.7.59a) and minimum conditions for

(3.7.59b).

We carry (3.7.60) back into (3.7.57-58) and obtain the simple

express ion

"_ e i _ O _ O

[/ext. = Uo + 2- (2p e + qc_8 e c_[3)A (3.7.61)

where p and q_[_ are the averages (3.7.57b,c) of the polarization components

deffned by (3.7.60). Averaging of (3.7.60) easily gives expressions of the

averages in (3.7.61). We have

~ 2Ae °

P- l+a ,4 (a)
O

r o
- __Re

qo. 1+b .B (b)

v

E m (C)-4 = 1

m:l,2 k ------k....ao
m o

(3.7.62)

v

9-- E , m /d/
m:l,2 G -G bo

m o

Introduction of (3:.7.6c) and (3.7.42) into (3.7.61) yields
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2
-_ = 0 i ._ 0

) ¢ + (Go+ 2 l+b_ )eil_ eUext. 2(k ° + ltao _ c_
A (3.7.63)

O
We now insert (3.7.52) and (3.7.63) into (3.7.59). Since e

a,B

O
can always be chosen as purely isotropic (in which case e = 0) or as_B

O
purely deviatoric (in which case ¢ = 0) we have

* >
k -k + (a)

< o l+a ..,4.
O

*> i ._B
G _ G + (b)

o 2 l+bo. _

(3.7.64)

where the upper inequality signs apply for (3.7.59a) and the lower inequality

signs apply for (3.7.59b). We now choose the moduli k , G so as to get
O O

the best bounds from (3.7.64). Let the right sides of (3.7.64a,b) be denoted

Fk (ko, G O) and FG (ko, G O) respectively. If these functions are explicitly

written out by use of (3.7.58b,c) and (3.7.62b,d), it is easily shown by

computation of first derivatives with respect to ko and Go that F k and F G are

monotonically increasing functions of k and G •
O O

Therefore, to obtain the

best lower bounds in (3.7.64) we have to choose the largest phase moduli

which comply with (3.7.59a). Assume that

k2 >k I G 2 >G 1 (3.7.65)
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Then the best choice (3.7.59a) is

ko = kl Go = G1 (3.7.66)

Similarly, to obtain the best upper bounds from (3.7.64) we have to

choose the smallest k
O

, G which comply with (3.7.59b). This choice is
O

ko = k2 Go = G2 (3.7.67)

Insertion of the conditions (3.7.66-67) into (3.7.64) yields the following

bounds

, v 2
=k +

(-) 1
1 v2

k2 -k I kl+G 1

. v 1

k (+) = k 2 +
1 v2

k l-k2 k2 +G2

G(-) = GT(- ) = G 1 +

v 2

1 (kl+2G1)vl
+

G2-G 1 2Gl(kl+G1 )

, . v I

G (+)=G T(+) = G 2 + 1 (k2+zGz)v2
G1G 2 2G C_+%1

(a)

0_)

(a)

(b)

(3.7.68)

(3.7.69)
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It should be recalled that the bounds are based on the assumption

(3.7.65). If the inequalities (3.7.65) reverse then obviously the upper

bounds (3.7.68-69) become the lower bounds and vice versa, since the

phases appear in the bounds in a completely unbiased manner.

The present treatment does not permit the cases

k 2 > k 1 G 2 < G 1

k 2 < k 1 G 2 >G 1

Such cases can be taken into account by a method given by Walpole [3.31],

but they are hardly of practical interest since materials whose elastic

properties are subject to such inequalities do not seem to exist.

It should be recalled that ifthe phases are isotropic then k in

(3.7.68-69) is the plane strain bulk modulus as expressed by (3.4.89c) and

G is the isotropic shear modulus. If the phases are transversely isotropic

then k is the transverse bulk modulus and G is G T, the transverse shear modulus.

We now recall the expression for k, of a composite cylinder assemblage

and we observe the remarkable fact that (3.5.91) and (3.7.68a) are identical.

Since (3.7.68b) may be obtained from (3.7.68a) by interchanging 1 with 2

we conclude that (3.7.68b) can also be interpreted as k of another, reversed,

composite cylinder assemblage in which the fibers are of material 1 with

volume fraction v I and the matrix is of material 2 with volume fraction v 2 .
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Two compos ire cylinders belonging to the two different assemblages are

shown schematically in fig. 3.7.1.This identification of the bounds with

composite cylinder assemblage results leads to some very important conclu-

sions as will be now explained.

It is to be noted that (3.7.68a) is a lower bound for any transversely

isotropic phase geometry, thus it is also in particular a lower bound for

the composite cylinder assemblage. Let it be assumed that there exists a

better general bound, i.e. higher, than (3.7.68a)in terms of volume

w

fractions only. But it is clearly seen that this is impossible since k
c

would be below it. It is, therefore, concluded that (3.7.68a) is the

best possible lower bound in terms of volume fractions. It is similarly

shown by identification of (3.7.68b) with the second, reversed, composite

cylinder assemblage result that (3.7.68b) is the best possible upper bound

in terms of volume fractions. The bounds (3.7.68) are called in short

best possible.

It is thus seen that if in a transversely isotropic two phase FM the

phase rnoduli and only the phase volume fractions are known, then this

information has been exploited to the fullest extent by the bounds (3.7.68).

Additional geometrical information is needed to improve the bounds.

This result has an important connection with statistical geometry

considerations. It has been shown in chap. 2.2 that for a statistically
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homogeneous body the volume fractions are one point probabilities. Thus,

the present bounds may be considered as the fullest exploitation possible

of this simple geometrical information.

It is of interest to note that ifthe phase shear moduli are equal while

the transverse bulk moduli remain unequal the bounds (3.7.68) coincide.

This is most easily seen by writing these bounds in the form (3.5.91a).

We thus have the exact result for arbitrary phase geometry

, v 2 k2 (k2 +G) v I + k2(kl+G) v 2
k =k + = (a)

i i Vl (k2 +G) vl + (k I+G) v2
+--

k2-k I kl+G

if

G 2 = G I = G k2 _ K 1 ' '

(3.7.70)

This has been first shown by Hill [3.5] on the basis of a direct exact field

solution for the case (3.7.70b). The result (3.7.70) can be added to the

results of par. 3.5.? as a FM exact solution for special relations between

phase moduli. Unfortunatelythe condition (3.7.70b) is not of practical interest.

At this time it is not known if (3.7.69) are best possible bounds in terms

of volume fractions, since it has not been possible to identify these bounds

with exact solutions for special phase geometry.

It is of some interest to note that for v 2 << i, v 1

coincides with the dilute reinforcement result (3.5. 132).

= i, the bound (3.7.69a)

Forv 2 = I, v I << 1
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the upper bound (3.7.69b) coincides with another dilute reinforcement result,

for a small amount of circular fibers of material 1 which are imbedded in a

matrix of material 2. Thus, the lower bound is best possible for very small

v 2 while the upper bound is best possible for v2 very close to unity.

It is easily shown that the bounds (3.7.68-69) are always closer

together than the elementary bounds (3.6.63b), (3.6.65). As will be seen

later, from numerical results, these new bounds are a substantial improve-

ment of the elementary bounds. However, from a practical point of view,

the bounds (3.7.68-69) by no means solve the problem of determination of

k and G , for the margin between the bounds (3.6.68-69) increases with
T

relative stiffness ratios of the phases, i.e. with the ratios kz/k I and G2/G I.

For elevated values of these ratios the bounds may become too far apart

to provide good estimates on the EEk4. This situation is not surprising for

it should be recalled that the bounds are very general results for transversely

isotropic fibrous materials, in which only the volume fractions are specified

and the geometry is otherwise arbitrary. If phase 2 is very stiff and phase 1

is very compliant the bounds must in particular apply to the cases of (a)

2 - fibers, i - matrix (b) 1 - fibers, 2 - matrix. It is evident that FRh4 (b)

is much stiffer than FRA4 (a)and, therefore, the bounds must be far apart.

This situation is also illustrated by the extreme cases of one rigid

phase or one empty (cylindrical voids) phase. We have
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phase 2, riqid

k2/k I -. _, G2/G I -+
(a)

. v 2

k(_) = k I + (kI +G I) Vl

. [ z(kl+GI)
v 2

] (c)

(3.7.71)

k(+)_ G (+)
(d)

phase 2, empty

k2/k I -+ 0, G2/G I
-. 0 (a)

k -+ 0 G -. 0
(-) (-)

. [ (k1+G1)v2 ]
k(+) = k I 1 + G1 + klV2

(b)

(c)

(3.7.72)

* [G(+) = G 1 1 -

2 (kI+G l)V2

2GlV2+kl (l+v2)
] (d)
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Having obtained bounds for k we can immediately write down bounds

for E Aand'0 A by insertion of (3.7.68) into (3.6.66), (3.6.68) for which,

it is recalled, the functional relations between E A , v A and k are defined

by the generalrelattons (3.4. 117) and (3.4. 118). Now it is to be remembered

that (3.7.68) have been identified with k of two different composite cylinder
c

assemblages and thus insertion of (3.7.68) into (3.6.66)_ (3.6.68) is

equivalent to the derivation of E
A

as has been done in par. 3.5.3.

and VA of composite cylinder assemblages

It is thus concluded that the resulting E A

and _)A bounds are EAc and VAc for the same assemblages connected

with the k bounds. Accordingly, we can write down the bounds at once

by use of (3.5.96-97)

. 4 (v2-_I)2vI v

EA(_ ) = El Vl + E2 v2 + 2
Vl/k 2 + v2/kl+i/Gl

2

. 4(v2-Vl) Vl v2

EA(+) =E l v I +E 2 v2 +
Vl/k2+v2/kl+I/G2

VA(i)= vlvl + v2v2 +
(_)2-_i)(i/k l-i/k_VlV2

Vl/k2+v2/k I + I/G 1

VA($) = Vl Vl + _2 v2 + (Vl-_;2)(I/k2-1/kl)Vl v2

Vl/k2+v2/kl + I/G 2

(a)

(a)

(3.7.73)

(3.7.74)
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The bounds are valid when the conditions

only the second of these is needed here).

signs in the left of (3.7.74) apply for

(3.7.65) are fulfilled. (Actually,

According to (3.6.68) the upper

'q -
> 0

k 2 - k I

and the lower signs apply for

'Ji - uZ
< 0

k 2 - k I

If the phases are transversely isotropic then E of the phases becomes

EA, v becomes _A and G becomes G T.

The bounds are obviously best possible in terms of volume fractions

since, by construction, they are composite cylinder assemblage results

and at the same time bounds for arbitrary transversely isotropic phase

geometry.

,

together. In particular the E A

W

for E A of any FM or FRM.

With the bounds (3.7.68-69) and (3.7.73-74) , bounds for E

be constructed by use of the general results (3.6. 107-108).

Bounds for n

In contrast to (3.7.68-69) the bounds (3.7.73-74) are close

bounds show that F.is an excellent approximation

W

T
ca n now

and _ can be obtained in similar fashion by use of the

general relations (3.4. i12). It is easily seen that if
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42 - 41
-> 0

k2 - kI

which is the case when 2 is stiffer than 1, both n and £ are monotonically

increasing linear functions of k Therefore an increase (decrease) of k

produces an increase (decrease) of n and Consequently, upper (lower)

bounds for n and 4 are obtained by introduction of upper (lower) bounds

for k into (3.4. 112). This results in

2 2

* * ( _2 - Zl ) ( 42 - Zl) -(+) = a(+) k2 al - [: k2 al + n (a)

_ik2 -_2kl
* * 62 - _i + (b)

_(-+)= _(-+) k2 - kl _2 - kl

(3.7.75)

* C o
We now consider the axial shear modulus G A . The and C cylinders

are both subjected to the boundary displacements.

S O
= e x_ (a)

U I 12 Z

S 0

u2 = e 12 Xl (b) (3.7.76)

S
u3 = 0 (c)

which area special case of (3.5.4). In the transversely isotropic C ° cylinder

the displacement field is of the form (3.7.76) throughout. Therefore, the strains

and stresses in the cylinder are homogeneous and are given by
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Oro _ o
12

0
e 0 0

12

0 0 0

0
0 2G ¢ 0"

o 12

o 0 0
2Go_ 12

0 0 0

where G o is now the axial shear modulus GAo.

c
The strain energy U per unit height is

O

2

e1 A (3 .7.77)U ° 2Go 2

The elastic fields in the C cylinder are determined by the axial shearing

formulation of par. 3.5.1. We have from (3.5.33-34)

12

13

_12 m13

0 0

0 0

(a)

(3.7.78)

2G_12

0

2G_13

0

0 0

(b)
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where G is the phase shear modulus which assumes the values GI, G 2 in

the two phases. It follows from (3.7.9a), (3.7.78a) and the stress strain

laws of the C ° and C cylinders that the polarization components are

-- "t

0 2G'®12 2G'e13 i
i
r

[P.,]=I 2G'e 0 0 ; (a)
t] 12

2G'e 0 0
13

(3.7.79)

O' = G - G (b)
O

Consequently, we choose an admissible polarization field of the form

-I

- 0 "" (m) P (m)" 0 1-(m) T(m)
P12 13 2 3

_- (m) 0 0
PI2

"" (m) 0 0
PI3

!

(m) !
T2 0 0 _ (3.7.80)

I
m (m) 0 0 j

3

which is constant in each phase, thus piecewise constant in the C cylinder.

Since the actual displacement field in the C cylinder is of the form

(3.5.30-31) while the displacement field in the G ° cylinder has the form (3.7.76)

we conclude, by taking their differencethat the actual u'. has the form
[

u_ :u' 1 (x2,x3)

=% =o
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Therefore u' is chosen similarly as

u I'= U'l (xz'x3)

u 3

(3.7.81)

The functional (3.7.29b) is now computed in terms of (3.7.80-81)for two

phases. We find easily

o - _" Gl--_o vl + G2-Go v2 -

] -$2 o A+U' (a)- 2 I12

where

I . .

U' = ( e 2 +T3 ) dA (b) (3 7 82)

A

--T2=T2(1) Vl + 7r2(2)v2 (c)

and ¢12' el3 are derived from (3.7.81).

Furthermore, u'. and n- are connected by the boundary value problem
t i

(3.7.19) which, because of (3.7.80-81), now assumes the form

Z -, + T3 = 0 (a)GoV Ul (xZ'x3) + T2,2 ,3

U = 0 on C (b)
1

(3.7.83)
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u (c)

1 _ } continuous

Go (U'l,2 n2 + U'l,3 n3) + T2 n2 + T3 n3 on Cin t (d)

The computation of U' in (3.7.82) must now be performed by insertion

of (3.7.80) into (3.7.83) , computation of u I and subsequent computation of

(3.7.82b). The details are given in the appendix further below. The

result is

1 (T i) • )) + (T - _3 Vl " "2G°

We now carry (3.7.84) back into (3.7.82) and thus this expression

iS now given in terms of T(2 ) , _'(3 ), Go and known quantities . The rest ofthe

bounding procedure is entirely analogous to the one previously used for k and

G T bounding. Therefore, only a brief outline wilI be given: In view of

(3.6.47) the actual strain energy per unit height of C cylinder is

2

U =2G A e12 A (3.7.85)

For the present case (3.7.38) assume the simple form

U -<U _ G 1 , G 2 > G (a)
O

G 2 < G (b)U a U e GI' o

(3.7.86)

Now (3.7.84) and (3.7.77) are h lroduced into (3.7.82). The resulting expression

for U and (3.7.85) are then introduced into (3.7.86) and then U is optimized
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with respect to T (m) T(m) in order to approach UCas closely as possible.2 '
W

Thus are obtained bounds for G A in terms of the unknown G o. These are

optimized with respect to G subject to the right side restrictions (3.7.86).
O

The result is

GA(_)= G 1 +

v 2 G lvl+G 2 (l+v 2)

=G 11 Vl Gl(l+v2) + G2 Vl (a)

G2-G 1 2G 1

, v 1

GA(+) = G 2 +

G 2 v2+ G 1 (l+vI) (]3)

1 v2 = G2 G2 (l+Vl) + G1 v2
nI-

GI-G 2 2G 2

(3.7.87)

whe n

G 2 > G 1 (c)

Comparison of (3.7.87a)with (3.5.111) shows that it is identical

to the composite cylinder assemblage GAc. Similarly, (3.7.87b) can be identified

with another, reversed composite cylinder assemblage GAc. (Compare, similar

discussion for k and G T bounds, above). Therefore, the bounds (3.7.87) are

best possible in terms of volume fractions.

If the phases are transversely isotropic G 1, G 2 in (3.7.87) are to be

interpreted as the axial phase shear moduli.
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The margin between the bounds depends upon the ratio G2/G 1 and

in this respect their behavior is similar to that of the bounds (3.7.68-69).

For extreme cases of one rigid phase or one empty phase we obtain the

following results

phase 2, rigid

G2/GI -" =

• i+v Z

GAG ) = G i i-v2 (3.7.88)

G A (+) " _

phase 2, empty

G2/G 1 -. 0

GA(_) -" 0 (3.7.89)

, 1 -v 2

GA(+) = G 1

The bounds (3.7.68-69), (3.7.73-74) and (3.7.87) bracket five EEM

which completely describe the macroscopic elastic behavior of macroscopically

transversely isotropic two phase fibrous materials, when the phases are iso-

tropic or transversely isotropic. All the bounds except (3.7.69) are known to be best

possible in terms of volume fractions.

W

Bounds for E
T

may be obtained by use of (3.6. I08-i09).
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Bounds (3.7.73-74) were derived by Hill [3.5], bounds (3.7.69),

(3.7.87) were derived by Hashin [3.13 ] and (3.7.68) were derived independently

in both of these references.

Hill's method of derivation is entirely different from the present one.

Its starting point is the direct proof of (3.7.70) , from which were deduced

the bounds (3.7.68). Then the bounds (3.7.73-74) follow as was described

above. While Hill stated that the bounds are best possible he did not

actually show this. He did identify bounds with "effective moduli" of a

single composite cylinder, but the composite cylinder assemblage model is needed

to identify the bounds with effective moduli expressions of a composite material.

The bounds given here are very important results as they clearly define

the restrictions placed upon EEM by specification of volume fractions only.

By their general nature the bounds obviously also apply for FRM. If the fibers

are much stiffer than the matrix then the upper bounds (3.7.68b) , _3.7.69b)

and (3.7.87b) are generally not useful from a practical point of view. In this

case the lower bounds are much more important since four of them coincide

with composite cylinder assemblage results and are thus in good agreement

with experimental results for circular fibers, as has been shown in par. 3.5.3.

W

Physical reasoning why the k and G bounds must be far apart for a
T

two phase material, in which one phase is very much stiffer than the other,

has been given previously. The same reasoning also applies for G A and E T

bounds. For all of these EEM it is crucial whether the stiff phase is in the

form of matrix or fibers.
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The situation is different, however, for E A
9:

and v A ' for these are

defined by uniaxial loading, in which case it does not matter too much which

W

material is matrix and which is fibers. Thus the E A bounds (3.7.73) are

found to be always extremely close while the '0 A bounds (3.7.74) are quite

close.

These observations will now be illustrated by some numerical examples.

Plots of some two phase bounds are shown in figs. 3.7.2 - 3.7.4 for a Boron-

9:

Aluminum fibrous material. The E T bounds have been obtained by use of

(3.6. 107-108). It is seen that in the present case the bounds are fairly

close together and thus provide valuable estimates for the EEM. It should be

borr,e in mind that because of the generality of the bounds they apply for

any transversely isotropic FRh4 with fibers of any shape.

Fig. 3.7.2 also shows, by comparison, plots of the elementary

shear modulus bounds (3.6.64).

9:

The E bounds are practically coincident and may for all practical
A

W

purposes be represented by F.. A list of _A bounds for various volume

fractions is given below. It is seen that these bounds are also very close.
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v2

0.2

0.4

0.6

0.8

h)

A(-)

0.276

0.249

0.228

0.213

A(+)

0.288

0.263

0.240

0.219

It should be borne in mind that the G T, E T and G A bounds forthe

present material are reasonably close since the phase stiffness ratios are not

too large. The Young's modult ratio, for example, is E2/E 1 = 5.6 for the

present material. The situation is different for such materials as Boron-Epoxy

and Glass-Epoxy in which the fibers are very much stiffer than the matrix.

As an example we consider the Glass-Epoxy material whose phase properties

are listed in table 3.6. i, par. 3.6. i. _hre compute fibrous materials bounds

for v I = v 2 = 0.5 and compare them in the table below to the previously computed

elementary bounds, given on page 224.

Table 3.7.1

v I =v 2 =0.5
6

Elastic moduli in i0 psi

Lower Bound Lower Bound Upper Bound Upper Bound

Elementary Improved Improved Elementary

0.92

5.45

0.210

0.29

0.29

1.04

5.45

0.221

0.41

0.36

k

E A

'9
A

G A

.k

G T

2.49

5.47

0.266

1.59

1.19

3.90

5.47

0.275

2.26

2.26
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The table shows that while the present bounds are a marked improvement

of the elementary bounds for k , G A and G

present material to provide good estimates.

T ' they are too far apart for the

On the other hand, the improved

E A bounds are excellent but are numerically the same as the elementary

bounds, The v improved bounds are better than the elenentary ones, but not
A

significant ly.

The method of derivation used above to obtain bounds for two phase

FM is easily applicable for any number of cylindrical phases. Bounds for

k , G T and GA for this case were given in [3.13J . These results are

k =k
(+) M

-i -i

I Ii + (kl + GI) tm___ _ Vm] -1

m=M-1 , -1 -1

-'l
(3.7.90)

G
T(-)

=G Im° ] IF___ (G m _ G1 ) Vm -i

2Glk+2Gt(kl+G1)Lm_=2d-_k-_d_7;7+zc_I= -1

-1

(3.7.91)

G
T (+) =GM+
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GA(-)
=G 1+2

m=M G m - G1 -i

[ _ll Vm]m_--2 _m

-i

(3.7.92)

. { - om-o GA(+ ) = G M 1 + 2 -i
m= 1 _mm_M vm

Here M is the number of phases, G I, k I are the smallest phase moduli and

GM, k M are the largest phase moduli.

For transversely isotropic phases k is the transverse bulk modulus,

G is the transverse shear modulus in (3.7.91) and the axial shear modulus

is (3.7.92).

9: *

Bounds for E A and _)A
cannot be obtained from (3.7.90) by use of

the relations (3.4. 117) and (3.4. 118) since these are restricted to the two phase

case. It is, however, to be expected that F. remains an excellent approximation

9:

for EA, while _) should be a fair approximation for _A"

It is not known whether or not any of the multiphase bounds is best

possible in terms of volume fractions.



294

3.7.4 Bounds for Circular Fiber Reinforcement

The bounds for EEM of fibrous materials which were developed in

paragraph 3.7.3 are very general results which are valid for any fibrous

material whose phase geometry is statistically transversely isotropic and

whose phase elastic modull and phase volume fractions are specified. Con-

sequently, the bounds are certainly also valid for transversely isotropic fiber

reinforced materials, where the fiber cross sections may be of any shape.

Furthermore, the identification of lower bounds with composite cylinder

assemblage EEM shows that this configuration is a FRh4 with minimum EEM

for qiven phase properties and volume fractions.

It will be recalled that in the treatment of the composite cylinder assem-

W

blage model the EEM GTc has been bounded from above and below by

application of the principles of minimum potential energy and of minimum com-

plementary energy, (3.6. 104). Since the composite cylinder assemblage has

transversely isotropic geometry, the general bounds (3.7.69) are certainly also

bounds for GTc and there arises the question which bounds are more restrictive?

It may be shown (by tedious algebra) that when the fibers are stiffer than

the matrix, i.e. when condition (3.7.65) is fulfilled, the lower bound (3.7.69a)

is always above the lower bound (3.6. 104); therefore the latter is not needed.

On the other hand the upper bound (3.7.69b) is below the upper bound (3.6. 104).

W

Consequently, optimum bounds on GTc are given by (3.7.69a) (lower) and

(3.6. 104), upper. The last bound can be put into the form (3.5. 113) and so

there are obtained the bounds (3.5. 113-114).
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As has been stated before, recent work by Hashin and Rosen indicates

.

that the upper bound (3.5. 113) may actually be the GTc expression for a com-

posite cylinder assemblage in which the fibers are stiffer than the matrix.

If the matrix is stiffer than the fibers it may be shown that the upper

bound (3.7.69b) is below the upper bound (3.6. 104) , thus superseding the

latter, while the lower bound (3.7.69a) Is below the lower bound (3.6. 104).

Gonsequently, optimum bounds consist of the lower bound (3.6. 104) and of the

upper (3.7.69b) . But note that according to the previous convention, where 2

was stiffer than I, the matrix must now be denoted 9 and the fibers 1 to obtain

the upper bound from (3.7.69). To avoid confusion let the matrix be denoted by

subscript m and the fibers by subscript f.

k > kf G > Gfm m

We then have for

[ v,'] . v,< G _ G + (3 7 93)1+ mA vf T m k +2G " "
Gm 1-2Vm 1 + m . m

Gf-G 2G (k +G )Vmm m m m

(3

whereA 4 (vf) is defined by (3.6.97).

It is not clear whether the arbitrary fibrous geometry bounds of par. 3.7.3

are valid bounds for regular arrays of circular fibers, such as square or hexa-

gonal arrays. It is recalled that the hexagonal array is elastically transversely

isotropic while the square array has this property with respect to axial shearing,

par. 3.4.3. But it should be remembered that the derivation of the bounds in par.

3.7.3 was based on the condition (2.9.14) which was used in (29), Appendix to

chap. 3.7. This condition implies that the phase qeometrv is statistically trans-

versely isotropic. Evidently, square and hexagonal arrays do not obey such a

geometrical restriction.
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On the other hand, it is empirically observed that for fibers which are stiffer than

matrix, lower arbitrary fibrous geometry bounds of par. 3.7.3 are below numerical results

for EE_v_ of such arrays and above the lower bounds (3.6.78-80) for such arrays.

W

Figs. 3.7.5-6 show numerical examples for G A of square and hexago:_al arrays,

, andrespectively. In fig. 3.7.5 the upper bound is the right side of (3.6.80) with v c V2c

defined by (3.6.75a) and (3.6.76), respectively. The "lower bound" is (3.7.87a). Also

shown is the n lmerical analysis result of ref. [3.22] for this case. Similar bounds are

shown in fig. 3.7.6 for G A of a hexagonal array of circular fibers. The upper bound

in this case is the right side of (3.6.80) with Vc and V2cdefiaed by (3.6.75b), (3.6.76).

The "lower bound" is again (3.7.87a). Numerical results of ref. [3.6] are also shown

and it is seen that the lower bound is practically indistinguishable from these up to 70%

fiber volume fractio:,. As the lower bound is also a composite cylinder assemblage re-

sult it is recalled that this numerical coiL,cidence has already been described in table 3.5.

The question of the validity of the arbitrary fibrous geometry bound for periodic

arrays merits farther investigation.

3.7.5 BOunds for Effective Elastic Moduli: Randomly Oriented Fibers

We consider the case of a statistically homogeneous and isotropic two phase

material with isotropic phases. A particular case of this is a FRM in which the fibers

are randomly oriented, all directions being equally likely, fig. 3.4.4.

Oeneral bounds for K and G of statistically isotropic composites in which

only phase properties and phase volume fractions are specified have been derived in

[3.33] on the basis of the polarization extremum principles which were derived in

par. 3.7.Z . The method of derivation is analogous to the one employed in par.

3.7.3 to derive bounds for k and C of FRM.
T
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Let the two phases be isotropic with elastic moduli K1, Gland K2 ,G 2 ,

respectively, for each phase. Also K2 > K1, G 2 > G 1. The bounds are then

. v 2

K(_) = K1 + i 3Vl

K2-K 1 +3TI+4G

v I

1 3v2
+

K1 -K 2 3K2+4G 2

. v 2

O(_) = G 1 + i 6 (KI+2G i) Vl

G2-G 1 5GI(3K1+4G 1)

G (+) = G 2 +

V 1

1 6 (K2 +2 G 2 )v 2
+

G l-G2 5G 2 (3K2+4G 2)

(a)

(b)

(a)

(b)

(3.7.94)

(3.7.95)

J

The bounds (3.7.94) are best possible in terms of the information available.

It is not known whether or not the bounds (3.7.95) are best possible.

The numerical margins between the bounds (3.7.94) and (3.7.95) are
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* W

of the same order as in the case of the previously considered k and G
T

bounds (3.7.68-69). Thus in the case of not too large phase relative stiffness

such as Boron-Aluminum the bounds (3.7.94-95) provide good estimates.

In the case of large phase relative stiffness such as Boron-Epoxy , this is

not the case.
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APPENDIX

Gomputation of U'

Establishment of the results (3.7.58)and (3.7.84) for U, for the case of

piecewise constant polarizationtis not simple. The results were originally

derived in [3.13] by use of statistical methods for differential equations with

random forcing functions, the forcing functions being in this case the body

force type terms P(18,_ in (3.7.54). Subsequently, Green's function methods

where used in [3.31] to derive a related result in the case of statistically

isotropic two phase composites. The present method of derivation contains

ingredients of both methods mentioned above.

(a) U' for Transverse Bulk and Shear Modulus Bounds

We introduce the simplified notation

u' = v (i)
c_ c_

The polarization P_8 is split into average Pc8

thus

- L(1) + _ (2)v2_=_ _v I P _

and deviation from average Tcz8 '

(a)

(b)

(2)

At present, p _ isa general tensor.

in a later stage of the development.

It will be taken as piecewise constant
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In view of (2a) the expression (3.7.56b) for U' can be written as

- f -i Pc_ i q- ,' 8dA (3)u'=_- _ _+_- _

since _a 8 is a constant tensor. Because of the boundary condition (3.7.55a)

and the average strain theorem, the first integral on the right side of (3) vanishes.

Also, since tab is symmetric we can rewrite (3) using notation (1) in the form

if_'=T qc_ v ,_dA (4)

Next (2) is introduced into the boundary value problem (3.7.54-55).

Since PctB is a constant tensor in all phases it contributes neither to (3.7.54)

nor to (3.7.55c). Accordingly, the boundary value problem can be rewritten

as follows

k v (m) +G v,m,C_ +q_(m) = 0 inR (a)
o B,Ba o c_,BB c_8,B m

v = 0 on C (b)
Ct

v (c)
(Z

+ • n_ 1 continuous on Ctn t (d):fa aS

(5)

V

Here T
Ct

denotes the traction type 'term

V

= (Vc_ 'T a (k -G )v B n +Go o ,B a o + VS,c_) n8
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which is the usual plane elasticity traction associated with a plane displacement

field v
CI

It is our purpose to construct a solution of problem (5) in terms of plane

elasticity Green's functions. In this respect it is first noted that since the

cylinder cross section A, which is bounded by C, can be taken to be of infinite

extent (in comparison to size of phase regions), the boundary condition (5b) can be

replaced by

v -. 0 at infinity (6)
CC

This replacement merely introduces the usual boundary layer effect at C which

quickly becomes insignificant at points removed from C.

Next we consider the auxiliary problem

k +G v +F =0 (a)
oV_,_ o a,_ a

0 atv -. _n_,n_Ly
C£

V

V

T_

continuous everywhere

where F is some body force distribution.
OL

VcL(X)_ : /GCL_ (X,X') F B (x_')dx'

(b)

(7)

(c)

(d)

The solution to this problem is given by

(8)

where G is the Green's tensor whose functional form will be discussed below,
aS

dx' is the area element

dx__'= dx 2 dx 3

and the integral extends over infinite two dimensional x' space. Similar notation for

integrals will be employed from now on: all elements of area shall be written in the

above form with all integrations extending over infinite two dimensional space.
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If we now compare problem (5) (with (5b) replaced by (6)) with problem (7)

we see that the body force distribution F
(m)

scan be simply replaced by • _,_ ,

but there is a fundamental difference between (5d) and (7d). For simplicity

the case of two phases is considered; then (5d) can be written as

T (2) -T (I) "T(1) _ T(2) (_) (9)<_ (_ = _ c_ c_ ) n on C12

(2)
where n _ is the normal pointing outward from R2 . From now on this normal

is taken as positive and is simply written n8 for the interface.

The traction discontinuity (9) can be interpreted as a body force layer

in the interface whose resultant per unit interface area is given by the right

side of (9), [3.27J. Accordingly, from (8), the displacement due to this

body force is

izV (x_) = / Gc_ B (x, x'I2 ) (T(I)87-'8_(2))nyds (i0)

C12

where
x'_enotes_¢ interface points , n is the interface normal (outward to R2)

7

and ds is element of arc of C12. Therefore, the total displacement v in (5)

which is produced by volume and interface body forces is

v (x) = (x) +/G (x x') __') dx' (ll)
12v_ -- _8 ' TBT,_ --

where the integral extends over all phase regions. The integrand may be

rewritten as
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= =G 'r BGOLI3TBV,V (Gas TBv ),3, aB,3,

Application of the plane divergence theorem brings the integral of the first

term into the form

ffGcd 3 _'_ n ds + (x' ' (T (2) - T ) n dsY 3, GaS ' x12) B3, 3,

C C12

(12)

It may be shown on the basis of the functional form of G and the fact
_B

that the average of TB vanishes , (2), that the integral over C , the boundary3, co

at infinity, vanishes. Thus introduction of the preceding results and of (10)

into (li) cancels the interface contribution and brings the solution of (5)

into the form

Equ (13) provides a formal solution for v a fora given distribution T provided• ctB

that (13) goes to zero at infinity in order to comply with (6). Expression (4)

is now known in principle; actual computation, however, is not simple.

We proceed by first obtaining the Green's tensor Gc_B for the present case.

The simplest way of doing this is to obtain its Fourier Transform (FT) by use of (7).

We define the two dimensional FT of a function %o in the form

o_

A 1 2
(%,%)= f

_(Kzx2+_3x3)

f_0 (x 2,x3)e dx 2 dx 3

--O_ --CO

where ;,= _/-i . In simplified notation
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E
9.

1 "'f" I,K"X

(_) = $ (K_)= (T_-) j _(x) e- -d_x

-LK ,x(x) = $ (<_) e

(a)

-- --dK (b)

(14)

where (b) is the inversion of (a).

The FT of derivatives is given by

(_,_)= - _Kc_

provided that %0vanishes at infinity I

given by

K2 ^
koK_K_v_+Go ¢'_-F_=0

_2 = K _ =K 2 +K 2
c_ ct 2 3

[3.32] .

(15)

Accordingly, the FT of (9) is

(a)

(16)

(b)

Solving for v
c£

we have

^ = (IS 0 "

v _ Go K 2 Go (ko+Go) K 4 F
(17)

Inversion of (17) by use of the convolution theorem for FT,

(x)= fGB (x-x,) F B (x') dx'

[3.32 ], yields

(18)

where G 8(x) is the FT inverse of the parenthesis in (18).

^ i 8 k K KB

_ G O 2 Go (ko+Go) K 4

Accord ingly

(19)
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The Green's tensor GaB can now be found by inversion, but it will not be

needed for subsequent development. It is seen that (18) is a reproduction

(indeed a proof) of (8) and shows that the argument of the Green's tensor

in the integrand is x - x'. It follows from (18) and (13) that

v (x)- _ = / _2
a,_ - ax_ v - axB_ x, [G 6(x-x')]_67

We introduce the variable

x - x' =X

Consequently

(x') dx' (20)

(2l)

_X' br
CL

(a)

b

bx _r
c_ ¢L

(b) (22)

dx' =dx_ dx 3 =dr_ dr_ =d x (c)

Introducing (21-22) into (20) we have

_2
va, B(x)_= brpr [Gc_6(X)] Toy(x-x) dx

,¢

(23)

_2 (_){/_aB (x)U'=2f_rs_r °as -_,6
Y

dr_ (24)
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Equ.(24) formally determines _' for any choice of waft, but the integral may

be extremely difficult to evaluate.

We consider the case of a two phase material and piecewise constant

Then

PaB

_-(1)
aB = const, in R1

,,. (2) _
P a B - const, in R2

(2 5)

and from (2)

TaB=

/--(1) _ _-(2) ) v2 in R= _PaB aB 1

/--(2) _ _ (I)) Vl in R2= _Pa_ aB

(2 6)

_(I_ Vl + -_(2)PaB = p a Pat v2 (27)

Consider the two point correlation integral

z"

P _.) =iT (X) Y (X+ r) dx (2 8)aBy6 af -- _6 -- --

For any x, T (X_) assumes only either one of the values given in (26) the
-- C£_

same being true of T (x + r ) The integrand can thus assume the values
_6 - "

(1) ,(1) ,r(1) ,r(2) ,r(2) (1) ,r(2) (2)6Tc_8 _6 ' c_B Y6 ' c_B T%,6, a8 7 only, according to the phases in

which the points x_ and x + r are situated. In terms of the two point

probability functions (2.2.8) of chap. 2.2 which have the form (2.2.14)_ because

of statistical transverse isotropy, the integral (28) can be written as
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P (r) = [_(i) (i) P1 (r)+ T(1) T(2) (r)+_By6 -- c_g T%,6 1 _g 3,6 P12

+ (2) (i) P2 (r)+ T (2) (2) (r)] Ac_g y5 1 c_g wy6 P22
(29)

This shows that

Peg%,6 (r_) = Peg%,6 (r) (30)

where r is the magnitude of _.r. It will be seen that this fact alone will enable

us to evaluate (24).

It follows from (28) that (24) can be written in the form

_'= 5r$ Ga6 (_r) _aS_t6 (_K) dK_ (31)
Y

By the rule (16) for FT of derivatives we have

r,_ [?rl3?r G_8 (r)] =-K8 KyGc_ 6
Y

Also, because of (30)

(32)

;% A

Pc_g_6 (K)-= Pc_8,_6 (_) (33)

where < is given by (17b). Introducing (33), (32) and (20) into (31) we have

,, K K
f k° fKctKg V 6 ,,_, 1 KC_K-----_$P (K) dE + (-_o+Go) K4 p (K) dK2U'= G o K2 " cLyy$ -- G o- -- cLB%,6 --

(34}
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We now introduce polar coordinates in

K = K COS @
2

K = K sin8
3

K space i.e.

(35)

A

and integrate (34) over an infinitecircle. Then, since P
a_y6

only, the angular integration can be carried out. The result is

is a function of K

oo co

k f_(_(_) 21"_ _d_ m _ _2G /pc_ _

9_, = o ^ o o ,,
&d _2

8G o (ko+G o) 4G ° (ko+G o) a _
O o

Now, from the FT inversion thegrem (14b) we have

(K) 27r _dK

(36)

-(,K • rP (r) = _ (_) e -- --dK (a)
a_6 -- aBy6 --

^P (o) = P (K) dK (b)
aBy6 aBy6 - -

(37)

Because of (33), (37b) reduces to

co

PaBy6 (o) =f _y6 (K) 2rr_

o

dE (38)

We have from (38), (28) and (26)

6(0) =/T (x) T (x) dxPaBy a_ -- 76 -- --

1i (1) Vl + T(2) (2)6= IT Ty6 aB T vz]A

(3 9)
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Note that (39) also follows from (29) and from (2.2.10), chap. 2. Insertion

of (38, 39) in terms of (26) into (36) yields

2U' =
ko

8G o (ko+G o)

(~(2) _(lX ~(z) ~(1[
P _ - P_' ( P _S - PSSj -

(4o)

k +2G ]o o ~(2) _(1) ~(2)__.(1)) v iv 2A
4Go(ko+G o) (Pas - pas ) ( pas a8

If the polarization components in (40) are separated into isotropic and deviatoric

parts according to (3.7.46), the result (3.7.58) follows at once.

(b) _' forAxial Shear Modulus Bound

The method is entirely the same as the one previously employed. The

boundary value problem is now (3.7.83) and U' is defined by (3.7.82b). We

use the notation

u_=, (41)

and we split the polarization vector
(z

T =7 +_' (42)
(Z C_ C_

into average and deviation, thus

Then (3.7.82b) assumes the form

U' = , dx

and the boundary value problem (3.7.83) becomes

(43)
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G w2 _(m) + T'(m) = 0
0 _,C_

(a)

_,(c) = o

G +T'
0 _n a

continuous at Gin t

(b)

(c)

(d)

(44)

In analogy to (13) the solution may be written as

_ [H(x_ x')] T' (__) dx_'(x) = - _x_ -
c£

(45)

where H is the Green's function which solves the problem

G V2_ (x_) + F (x_) = 0
o

-_0 at infinity (46)

continuous everywhere,%' 5n

in the form

(x) = /H (x -x') F (x') dx_'

The FT of H is easily shown to be

(47)

^ 1
H (i)-

G _2
o

(48)
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Proceeding now just as in the derivation of (24) we find

H (_[) (x) T_ (x-r) dx dr (49)

Next for piecewise constant polarization we have

T I

(Z

(T(1)(z - T(2))a v2 in RI

(T(2)O_- T(1))C_Vl in R2

(50)

I-
T (r) = I'r'_8 ,/ a

I

(x)_ T_ (x+_r)dx=T_ a. a (r) (5 1)

Proceeding as previously the analogue of (32) becomes

_' = } _r a ar 8 H (r) _c_8 (_K)dK
($2)

which leads in view of (48) and (16) to

1 £ K

U'= y TaBG O K2
(K) d__ (53)

Introducing now the polar coordinates (35) and carrying out the angular integration,

(53) becomes

- /U' - 1 _ (K) 2_KdK-
2G aa

o
O

2G
O

T (o) (54)
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where a relation of type (38) has been used. Then from (gO-51) and (54)

1 (z) (z) (z) (z)
U'- (T - T ) (T - _r ) v lv 2A (55)2G ct ct ct

O

which is the result (3.7.84)
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3.8 FIBER EMBEDDING APPROXIMATION

We have so far considered only rigorous methods of prediction of EEM

of FRM. Many approximate treatments can be found in the literature. Discus-

sion of all of these is certainly not within the scope of the present work.

In view of the respectable available number of rigorous theoretical results,

and their good agreement with experiments, it has also to be questioned

whether such approximations serve much useful purpose.

We shall here be concerned with only one method of approximation

which is often called the "self consistent scheme. " This method is here

called: fiber embedding approximation (FEA) since it is believed that this

name is more descriptive.

The method has been applied in different ways and with different end

results by Hill [3.21] and Hermans [3.34]. The FEA will here be generalized

so as to include the previous two different approaches as special cases. The

present treatment is similar to one given by Hashin [3.35 J, for particulate

composites.

Let a transversely isotropic FRM with circular fibers be subjected to the

usual homogeneous displacement boundary conditions (3.3. l). By the results
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of par. 3.4.6 we know that it is sufficient to determine strain averages in one

phase, which is here chosen as the fibers, in order to compute EEM. The FEA

may be interpreted as a method by which the strain averages in the fibers are

estimated and are then used in the general EEM expressions which were

derived in par. 3.4.6.

For illustrative purposes we consider first the problem of computation

of the effective transverse bulk modulus k*. Appropriate homogeneous displace-

ment boundary conditions on a cylindrical specimen are (3.4.59), which are here

O O

ul(S) = 0 u 2(S) = ¢ x 2 u 3(S) = ¢ x 3 (3.8.1)

rewritten

A typical fiber of radius a is imagined to be surrounded by a concentric

cylindrical surface of radius b, which lies wholly in the matrix and does not

include any other fiber. There has thus been formed a composite cylinder of

radii a and b. The fundamental approximation to be introduced now is that the

composite material outside the composite cylinder is replaced by a homogeneous

transversely isotropic material whose elastic moduli are the EEM of the composite.

Before we proceed further it is worthwhile to examine this fundamental approxi-

mation. It is recalled that the concept of EEM is based on averages taken over

RVE which must necessarily contain many fibers. The present approximation

departs rather severely from this concept in that the immediate vicinity of on____e

composite cylinder is replaced by an equivalent homogeneous material. This

can certainly not be correct. All that can be said about this immediate vicinity is

that the elastic moduli assume erratically either fiber or matrix values.
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Bearing all this in mind we proceed with the development. The boundary

conditions (3.8. I) are applied at a distance R>> a,b from the composite

cylinder center, fig. 3.8.1 , and at the interfaces r = a,b the usual displace-

ment and traction continuity conditions must be fulfilled. Thus there has been

formulated a well defined elasticity boundary value problem of a three layer

composite cylinder which enables us to computethe strains in the fiber.

The solution of this problem is very similar to that of the two layer compo-

site cylinder which was considered in par. 3.5.3 and the solutions in all layers

are again of the form (3.5.73). Instead of solving the boundary value problem

to find the strain in the fiber, we shall develop a different method of solution.

We recall from par. 3.5.3 that a composite cylinder behaves as a homogeneous

cylinder with apparent transverse bulk modulus given by (3.5.80). Denote

(a/b) 2 = V2c

and denote the function on the right side of (3.5.80) by kc (V2c)"

(3.8.2)

Thus

kl(k 2 + G1) (1 - V2c) + k 2 (kl+G1) V2c
(3.8.3)

kc(V2c) = (k2+ Gl)(l-V2c) + (kl+G I) V2c

Then the inner composite cylinder is replaced by a homogeneous cylinder with

1

transverse bulk modulus kc(V2c). The strain ¢ = z_- (_22+¢33) in this equivalent

cylinder is the average strain in the composite cylinder and is denoted _ .
c

Such a problem has been solved in par. 3.5.4 in conjunction with dilute
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reinforcement theory, the pertinent result being (3.5. 124). In the present

interpretation and by the first isotropy-transverse isotropy analogy, par. 3.5.1

we have

k +G
- T O

. _ (3.8.4)

c kc(V2) +G T

where k and G
T

are the unknown EEM of the FRM.

The displacement of the surface of the inner composite cylinder is

radial and is given by

m

u (b) = b
C C

To find the strain in the fiber we consider the problem of the inner composite

cylinder with this boundary condition. This has been solved in par. 3.5.3 but

again we use a different approach. We apply (3.4. 123) to the composite

cylinder. Consequently

- (2)

k = k I + (k2-kl) ¢c(Vzc ) - Vzc (3.8.5)

C

where
C

is the average strain in the fiber. From (3.8.5)and (3.8.3)

- (2) kc(VZc)-kl k + G T

k 2 - k 1 kc(V2c)+G T

O

V2c

(3.8.6)
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The same computation can be carried out for any fiber and as long as

a/b is always the same the result (3.8.6) remains the same. Thus (3.8.6) is

the average strain in all fibers.

Finally,we use the estimate (3.8.6) in the general equation (3.4. 123)

for the FRM. We then have

t *

. k +GT v2 (3.8.7)
k = k 1 + [kc(V2c) - k 1] . .

kc (v2 c)+G T V2c

where v2 is the fibers volume fraction relative to the composite. It is seen

that (6.8.7) involves both k and G T and is thus not in general sufficient to

determine either one of them. Another equation which involves both k and G
T

is thus needed. This will be discussed later below. It is also noted that k

and G T in (3.8.7) are both functions of v2c which is not known and can be chosen

in many ways. Thus V2c has to be regarded as some unknown parameter of

uncertain status.

In Hill's [3.21J approach it is assumed that

V2c = 1 (3.8.8)

Because of (3.8.2) this implies that the fiber is directly imbedded in the

equivalent composite without an intermediate matrix shell. Since by (3.5.80)

kc (i)= k2

we have from (3.8.7)
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. k (i) +GT(1)

k (i) = k I + (k2-k _) , v 2

k2 + GT(1)

(3.8.9)

which is in agreement with Hill's result.

On the other hand Hermans [3.34 ] assumed

V2c = v2 (3.8.i0)

This implies that the fiber and matrix volume fractions in the composite cylinder

are the same as in the FRM. If (3.8.10) is introduced into (3.8.7) it is easily

shown after some algebra that without regard to the value of G T ,

k (v2) = kc (v2) (3.8.11)

In view of (3.8.3), (3.8. II) implies that in this case the FEA predicts the

composite cylinderassemblaqe results (3.5.80), (3.5.91).

Next we consider the effective axial Young's modulus E A and Poisson's

ratio _A on the basis of the FEA. Hill [3.21] who assumed (3.8.8), showed

that in that case his general relations between k , E A

(3.4. 118), remained valid for the FEA predicted results.

show by his reasoning that the relations are also valid for E A

by the present generalized FEA. Therefore we have

and v A , (3.4.117),

It is not difficult to

and _A predicted

, 4(vZ-Vl)2 [ Vl + v2 1 1

EA (V2c) = E + I/kl-i/k2 -_I k2 k*(V2c)

(3.8.12)



319

. klk 2 ('vl-'V2) 1 v2k2 - 'Vlkl
= . + (3.8.13)

'_A (V2c) k2 - kl k (V2c) k2 - kl

where k (V2c) is given by (3.8.7). It is seen that (3.8.12-13)are functions of

,

V2c whose value has to be assumed and of G T (V2c) which is not yet known.

If (3.8.8) is assumed we obtain Hill's results. If (3.8.10) is assumed we

obviously obtain the composite cylinder assemblage results (3.5.96-97),

since in that event k (V2c) reduces to (3.5.91).

The problem of G T is more difficult, though the principle of the method

is the same as in the case of k . The three layered cylinder, fig. 3.8. i, is

now subjected to the boundary conditions (3.4.13). Then G T is given by

(3.4.15) or by (3.4. 125), the latter being more convenient for our purposes.

It is seen that it is now necessary to find the strain _2) in the fiber and for

this purpose it is necessary to solve the elasticity problem of the three layered

cylinder under boundary conditions (3.4.13) with the usual traction and

displacement continuity conditions at the interfaces r = a,b. The solution

to this problem is of the general form (3.6.85) , par. 3.6.4 which was there

utilized for the problem of a two layer composite cylinder. There are here

three different solutions for the equivalent material, matrix shell and fiber

respectively. These involve eight arbitraryconstants which are defined by a

system of eight linear equations in eight unknowns. Analytical solution of the

problem has not yet been carried out and we can therefore not establish here a

relation of type (3.8.7) for G
T as a function of any V2c. Instead, we shall
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consider only the special cases (3.8.8) and (3.8. I0). In the first case the

fiber is directly imbedded in the equivalent material and there is no matrix

shell. In that event the solution for a single fiber in a large cylinder which

has been given in par. 3.5.4 for dilute reinforcement is immediate/y applicable

here. We have from (3.5. 133) and the first isotropy - transverse isotropy

analogy, par. 3.5.1

k (1)+ G T (i) o
(2) = 2 -,- , , * e (3.8.14)

23 k (i) + [k (i) +2GT(1)] G2/G T(1) 23

Insertion of (3.8.14) into (3.4. 125) gives

. k (1)+GT(1)
GT(I ) =GI +2(G2-GI ) , , , , v 2 (3.8.15)

k (i) + [k (i) +2GT(1)]G2/GT(1)

This is equivalent to the result obtained by Hill [3.21]. Eqns. (3.8.9) and

(3.8.15) determine the unknowns k (i) and G (i).
T

Analysis on the basis of the assumption (3.8. i0) has been attempted

by Hermans [3.34]. The continuity conditions at r = b, in the three layer

cylinder problem have, however, been disregarded in his analysis and the

meaning of his result in the frame of the FEA is therefore not clear. It is a

curious fact that Hermans' G
T

result is the same as the general fibrous mater-

ial lower bound (3.7.69a). The reason for this is not known to the writer.
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It thus appears that at the present time (3.8 • 15) is the only available

FEA result for G T •

Finally we consider the axial effective shear modulus GA. To obtain

a FEA for this modulus we can utilize the same method which led to the

expression (3•8.7) for k • }'or this purpose we make use of eqns. (3°4.124).

(3.5.111), (3.5.130) and (3.5. 106)• We dispense with the details and give

only the final result

. . O c (v2c) - G 1 v2

G A (V2c) = G 1 + 2G A (V2c) . • -- (3.8.16)
Gc(V2c) + GA(VZc) V2c

where

G 1 (1-Vzc)+G2 (l+V2c)

Gc(V2c ) =G1 Gl(l+V2c)+Gz(l_v2o ) (3 8 17)

It is seen that (3.8.16) directly determines G A (V2c) as the solution of a

quadratic. In the special case (3.8.8) we obtain

.2 .

G A (1) -2GA(1) (G 2 - G l) (v2 -v l) - G 2 G 1 = 0 (3.8.18)

which is equivalent to Hill's result. In the special case (3.8.10) we obtain

G A* (v2) =Gc (v2) (3.8.19)

which because of (3.8.17) implies that (3.8.19) is the composite cylinder

assemblage result, (3.5.111). This again agrees with the result obtained

in [3.34].
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We shall now attempt to assess the importance of the FEA method on the

basis of the results which were obtained above. It is recalled that only in the

special case (3.8.8) is a complete set of PEA expressions available. They are,

however, not convenient results from the computational point of view, since

k and G T must first be obtained by solution of the two simultaneous

equations (3.8.9) and (3.8.15).

It has been shown by Hill [3.21] that his FEA results, which are based

on the assumption (3.8.8), are always bracketed by the general fibrous

material bounds which were given in par. 3.7.3. It can moreover be shown

that if the bounds and Hill's FEA results for any EEM are plotted as function

of fiber volume fraction the FEA result starts out tangent to the lower bound

and terminates tangent to the upper bound, A schematic example is shown in

fig. 3.8.2. Since for the stiff fibers and soft matrix which are used in practice

the upper bounds are much higher than the actual values of EEM, as has been

explained in par. 3.7.3, it follows that for that case Hill's FEA results also

considerably overestimate the EEM values for appreciable fiber volume fractions

(50% - 70%) as used in practice.

In the event of a FRM in which the fiber to matrix stiffness ratios

are not too high(e.g, metal fibers in different metal matrix) the general fibrous

material bounds may become quite close. But in that event the FEA is not

needed, since the bounds themselves provide good estimates.
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As has been shown above the FEA in Herrnans' version, which is based

on (3.8. i0) does not provide new information since in four cases his expressions

reduce to the composite cylinder assemblage results, which are also general

W

fibrous material lower bounds, and in the fifthcase (G T ) the result appears to be

incorrect. But it would seem that the composite cylinder assemblage inter-

pretation of the results is much preferable to their FEA interpretation, since

the former is based on rigorous analysis of a model while the latter is based

on an approximation of uncertain validity.

Neither of the assumptions (3.8.8) or (3.8.10) has fundamental signifi-

cance, since as has been pointed out the FEA can be carried out for any value

of V2c. (It is most likely, however, that V2c must be bracketed between the

values (3.8.8) and (3.8.20) , compare [3.35] ). Accordingly there exists an

infinity of FEA predictions and it is not clear why any of these should be

preferred to another.

It may therefore be concluded that the FEA is a method of quite limited

value and that available results which are based on rigorous analyses of FRM

models are much to be preferred.
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3.9 COMMENTS ON MACRO-MECHANICS OF COMPOSITES

In all of the preceding treatment we have been solely concerned with

effective elastic moduli of composites. It is recalled that EEM are defined

by linearity relations between stress and strain averages of statistically

homogeneous fields of stress and strain, and it should be emphasized that

such fields are an exception rather than a rule in heterogeneous media.

This may be better understood if it is pointed out that a SH field in a SH

body is the statistical generalization of a homogeneous field in a homogeneous

body. In homogeneous elastic bodies, homogeneous fields of stress and

strain arise only in the case of homogeneous boundary conditions in static

conditions. In all other cases, and in particular in all dynamic cases, the

fields of stress and strain are non-homogeneous, i.e. space variable.

The statistical generalization of a non-homogeneous field is a

statistically non-homogeneous (SNH) field. Such fields no longer have the

property that body averages are equal to RVE averages .( See fig. 3.2.3).

Simple examples of SNH fields are internal stress and strain fields in hetero-

geneous cylinders in torsion or bending and in vibrating heterogeneous cylinders.

Now the chief interest of the engineer in prediction of EEM or other

effective physical properties is to use them in the analysis of structures or

parts which are made of composite materials. Since, as has been pointed out,

the stress and strain fields in such structures and parts are mostly SNH,

there apparently arises a difficulty in the practical use of EEM. A general

approach to the problems mentioned would consist of efforts to establish
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macroscopic equations of composites in terms of some average quantities

which would describe the behavior of the composite in some global sense.

This is at present an active research area and a definitive theory does not

seem to be available at the present time. It is possible that

macroscopic continuum equations of a composite are of multipolar type,

For examples of such investigations the reader is referred e.g. to [3.36-37] .

Here we shall only give some simple analytical reasoning with the aim of

providing some justification for use of classical equations in terms of the

effective elastic moduli.

Consider a composite body whose phase geometry is SH. The fields of

strain and stress in the body are, however, SNH. We choose a RVE as

previously defined which has some specified shape, e.g. a cube. The position

of the RVE is determined by the position vector x from the body coordinate

system to a specified point, e.g. the centroid, in the RVE. The RVE may be

located at any place in the body, its sides remaining parallel to the body's

coordinate plan_.s. Then the position vector x may cover all points within

the composite.

Within the RVE in any position define a local coordinate system Yi whose

origin is the end point of the position vector x.

ments taken over RVE. These are given by

(*)

l/u i (x) = _ u i (x +X) dx

V'

dx = dY 1 dY 2 dY 3

Consider the average of displace-

(3.9. I)

[*) Such an average is sometimes called a moving average, since it may be imagined

that the RVE moves throughout the body with the average being taken instantaneously.
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where V' is the RVE volume. It is assumed that the average is a continuous

function of x, The displacement u. (x + Z ) is called the micro-displacement
1

while the average ui(x__) is called the macro-displacement, Similar averages

can of course be written down for any quantity,

Next consider the gradient of u. (x_).
1

We have

5ui- 1 /  ui(x+x) 1 f _ui(x-+Y3
x. V' _ xj dy - V' _ YJ dy_ (3.9,2)
] V' V'

_u _+z)
l

The left side of (3.9.2) may be called the macro-gradient while

yj
may be called the micro-gradient. Equ. (3.9.2) states that the macro-gradient

is the average of the micro-gradient. Analogously, we define a macro-strain by

- 1 _u(x) _u (x)
i-- + J -- ) (3 9.3)_ij (x-)=-[" ( _x _x.

j 1

and a micro-strain by

(x+y_)= 1 _u(x+x) _u.(x+9
1] 2"- ( 1 -- + J ) (3.9.4)
'" 5Yj 5Yi

It follows from (3.9.3-4) that

- 1
¢ij(x--) - V' f ¢ij

V'

(x+x) dz (3.9.5)

which implies that the macro-strain is the average of the micro-strain.
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We define macro-stresses and macro-body forces by

v- i/_ij (x-) = _ii, (x + y_ ) dy

V'

1
Fi(x) = _ / Fi (x+z) dx

V 0

Averaging of the equilibrium equations for micro-stresses

(3.9.6)

_.. (x_+ Z)
._) +F. (g_+z) = o

as done in (3.9.2), easily yields similar equilibrium equations for macro-

stresses. Thus

_ (x_)
ij + _.(x)= o
_x. i--

(3.9.7)

All results derived up to now are exact. It is our purpose now to establish

differential equations for the macro-displacements u i . The simplest approach

that we can take is to assume that the stresses and strains in any RVE may be

considered to be statistically homogeneous. Note carefully that this does not

imply that stresses and strains are SH throughout the body, since the averages

over RVE vary with position.

The assumption made is certainly reasonable when the space variation

of RVE averages, e.g. of macro-stresses and macro-strains is not drastic through

typical RVE dimensions. If this assumption is adopted we can write down the

macro-stress-strain relation
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8ij(x_)= Cijkl _kl(X_)
(3.9.8)

where Cij kl
are the usual EEM.

It is now seen that equs. (3.9.3), (3.9.7-8) have just the form of the

usual elasticity equation of par. 3.2. l. Indeed, substitution of (3) into (8)

and substitution of the resulting macro-stresses into (7) yields

+F = 0 (3.9.9)
C ijkl Uk,lj i

which are of the form of the classical elasticity equations, (3.2.13).

m

Boundary conditions for u.
1

are obtained by performance of the average

(3.9.1) over RVE's near the boundary, thus in a boundary layer. It is

intuitively plausible that actual deterministic boundary conditions

O

U.(S) = u on S
I i u

T. (S) T °
= . on ST1 1

(3.9.10)

prescribed over the surface of the composite, can be approximated by specification

of the boundary layer conditions

_l.(S)= u°
i i

(3.9.11)

T. (S) = T °
1 1

where overbars denote local RVE averages. This completes the mathematical

formulation of the problem for the determinatiDn of the macro-displacements u. (x).
1
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It is recalled that the crucial assumption used is contained in equ. (3.9.8).

More complicated theories can presumably be established by generalization of

(3.9.8).

Since the present theory is completely analogous to classical elasticity

theory it is immediately concluded that all classical static elasticity solutions,

and also elastic strength of materials results, generate similar results for macro-

displacements, strains and stresses as defined here, simply by replaqement of

homogeneous elastic moduli by effective moduli.

The present theory may be called the first approximation to macro-

elasticity theory of composites. The writer believes that on the basis of

our experience with composite structures and parts it should provide reasonably

accurate answers for most elastostatic problems of composite bodies.

To give an example for the first approximation consider the deflection

of a uniaxially fiber reinforced beam under transverse central concentrated load,

with the fibers in beam axis direction. For a homogeneous transversely

isotropic beam

p, 3
6-

4 8EAI

where

P - load

I

EA

6

-moment of inertia

- span

- axial Young's modulus

- deflection under load.
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W

If the beam is fiber reinforced with effective axial Young's modulus EA, then

according to the first approximation

p_3
6- .

48EAI

Note that the last result is based on an Euler-Bernoulli assumption

for macro-d isplacements.

Similarly, all static solutions for homogeneous structures may now be

interpreted as first approximation solutions for structures made of composite

materials, simply by replacement of the elastic moduli in the classical

results by effective elastic moduli.

Establishment of a similar first order approximation for elasto-dynamics

of composites, in general, and of FRM, in particular, is not so simple and

straightforward. It has proved possible to derive such a theory for two phase

materials. The resulting macro-differential equations are similar to classical

equation of elastodynamics and contain in their coefficients static EEM

and effective densities which are not the average densities, (to be published).

The problem of dispersion of elastic waves due to material

heterogeneity is at present an active research area. For examples

of such work the reader is referred to [3.37-38J.
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3.10 BIAXIALAND MULTIAXIAL FIBER REINFORCEMENT: LAMINATES

3. I0. I Introduction

Elastic analyses of conventional uniaxial FRM which were given in

preceding chapters, as well as experimental results, show that stiffness

in fiber direction can be much larger than stiffness in transverse direction.

To give an example we consider the ratio E_/E*T(+) on the basis of the

numerical results given in tables 3.2-4. For v I = v 2 = 0.5 we obtain for

glass/epoxy, boron/epoxy and boron/aluminum the values 3.64, 17.70 and

1.55, respectively, for this ratio. It is seen that the ratio is largest for

boron/epoxy the reason being, of course, that this material has the largest

phase stiffness ratio of the three FRM considered.

A similar even more pronounced difference exists between strengths

in axial and transverse directions.

These anisotropic stiffness and strength properties lead to important

engineering conclusions. Evidently, the uniaxial FRM is a suitable mate-

rial for structural members which are predominantly uniaxially stressed;

thus for structural members subject to axial forces and bending in one plane.

Such structural members are bars, struts, beams, frames and rings. On the

other hand, plate and shell structures are subjected to forces and moments

in all directions within their surfaces and thus uniaxial reinforcement is not
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suitable, for it is liable to expose the weak transverse direction of the

material to unbearable stresses. (It should be borne in mind that a

material as boron/aluminum is less limited in this respect.) For such

structures it is therefore advantageous to employ fiber reinforcement in

more than one direction. This is usually done by construction of FRM

which consist of parallel uniaxially reinforced layers. Fig. 3.10.1a shows

a biaxially reinforced material in which the angle of reinforcement alternates

from layer to layer. Triaxially and multiaxially reinforced materials may

be constructed in similar fashion.

It is necessary to distinguish between two fundamentally different

cases. In the first case, each layer contains only one or two planar

sets of fibers, fig. 3.10.1b. Such a material must be considered as a

three dimensional fiber reinforced material. Its analysis is exceedingly

difficult and is at the present time an open subject. Methods of analysis

for uniaxial FRM which were discussed in preceding chapters are not

a pplicable.

In the second case, each layer contains many uniaxfally oriented

fibers, fig. 3,10.Ic, and therefore the layer itself may be considered as

a uniaxial FRM whose properties were discussed in preceding chapters.

There is therefore introduced the fundamental approximation that each

layer may be replaced by a homogeneous material whose elastic moduli

are the EEM of the uniaxial FRM. If this approximation is accepted,

the theory of biaxially (or multiaxially) reinforced plates and shells
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reduces at once to theory of laminated plates and shells in which the

laminae or layers are anisotropic.

3.10.2 Laminae Stress-Strain Relations

Since the elastic axes of the laminae are differently oriented, it

is necessary to refer their elastic properties to one common coordinate

laminate (*)system. Taking as an example the biaxial , it is advantageous

to refer the elastic properties of a layer or lamina to a cartesian coordi-

nate system one of whose axes is perpendicular to the layer surface while

the other two axes bisect the angles produced by the alternating directions

of reinforcement, fig. 3.10.2. In the case of a plate this is the coordinate

system to which the entire laminated plate is referred. In the case of a

shell the coordinate system described defines the local directions of a

curvilinear system one of whose surfaces is the shell surface.

Let it be assumed that the laminae are made of the same FRM which

is transversely isotropic around its fiber direction. The fixed coordinate sys-

tem to which the biaxial material is referred is denoted x I x 2 x3, the mate-

rial coordinate system of layers with reinforcement angle @ is denoted x' x' x'
1 2 3

and the corresponding coordinate system of layers with reinforcement angle

(.)
Such a laminate is sometimes called: angle-ply. In the special case of

perpendicular fiber directions it is called: cross-ply.
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" x" " . In these layers x_ " are in respective-@ is denoted Xl 2 x3 , Xl

fiber direction, fig. 3.10.2.

The elastic moduli of the laminae, referred to their material coordl-

nate systems, are by hypothesis the effective elastic modull of the same

transversely isotropic FRM and are denoted Cijk • It is necessary to

transform these moduli to the x I x 2 x 3 system. The transformed modull

...... ' " systems are denoted C'ijkZand C"in the x I x 2 x 3 and x 1 x 2 x 3 like'

respectively.

By the laws of tensor transformation

Cijk_ = 2/. Z' ' C' £'ip jq kr _ _s pqrs
(a)

c", -- " c (b)lj k _ £ ip kr pqrs

(3.lo.l)

where _ '.. and _".. are the sets of direction cosines which define the
l] U

' ' x' and " x" x" system. The relative position of
position of the x I x 2 3 X l 2 3

these systems are defined by rotations of @ and -@, respectively, in the

x 1 x 2 plane. Therefore,

cos8 sinO 01
' = l-sin6 cos% 0

[o 0 0

(a)

(3.10.2)

ij

cos@

= sin@

0

"1

-s !.;_ 0 /

Jcos_ 0

0 0

(b)
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Similarly, for compliances

S_ = _'ip ' f,' J_' Sjk_ 9, jq kr _ s pqrs

" _," _," Ssijk =  'ip  'iq kr ks

(a)

(b)

(3.10.3)

From (3.4.47-49), (3.4.51-55) and (3.4.78) single lamina moduli

and compliances are given by

[C pqrs ] =

[Cllll Cl122 Cl122

Cl122 C2222 C2233

Cl122 C2233 C2222

0 0 0

0 0 0

0 0 0

C

0 0 0

0 0 0

0 0 0

0 0
1212

0 C2323 0

0 0 C1212

I (C2222 3)C2323 = _ - C223

(a)

(3.10.4)

(b)

or in "engineering" notation

[Cpq] =

-a

-C11 C12 C12 0 0 0

C12 C22 C23 0 0 0

C12 C23 C22 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C44

1

C55 = _ (C22 - C23)

(a)

(b)

(3. I0.5)
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with similar matrices for compliances.

The moduli and compliance components may also be written as

CIIII = CII =

C2222 = C22 = k+G T

C1122 = C22 =

C2233 = C23 = k-G T

C1212 = C44 = G A

C2323 = C55 = G T

(3.10.6)

1

Sllll = Sll - EA

1

$2222 = $22 - ET

v A

SI122 = S12 - EA
V

T

$2233 = $23 - ET

i

S1212 = $44 - 4G A

1

$2323 = 855 - 4G T

(3. to. 7)

and all others vanish. It is recalled that all moduli and compliances in

(3.10.6--7) are effective.

It follows from (3.10.1), (3.10.2} and (3.10.3) that the moduli

C' are given by the following symmetric matrix
pqrs
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m

' ' C' 0 0
Cllll Cl122 Cl133 1112

I !

@1122 C1222 C1233 C2212 0 0

I I !

C_133 C2233 C3333 C3312 0 0

I I !

C_ll 2 C2212 C3312 C1212 0 0

I I

0 0 0 0 C2323 C2331

!

0 0 0 0 C2331 C_131
I

(3.10.8)

In the engineering notation, (3.10.8) assumes the form

!

[c pq] =

! ! !

C11 C_ 2 C13 C14 0 0

I I !

C_ 2 C22 C23 C24 0 0

I I I

C_ 3 C23 C33 C34 0 0

! C I ! 0 o
0 0 0 0 5 C56

t 0 0 0 C' C'
0

56 66

(3.10.9)

Obviously, the C" S' and S"
pqrs' pqrs pqrs

form as (3.10.6-7).

The C' components are given by
Pq

matrices have the same
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2 e 2 e
, 4 sin4@+ 2C12 cos sin2e+ 4C44 cos sin2%ell = CII cos 0+C22

= 2
C_ 2 (Cli+C22) cos28sin28+ C12(cos48 + sin4{)) - 4C44 cos @sin2%

4 2 26
cos 6 sin2e + 4C44 cos sin28Ch2 = Cll sin48 + C22 cos 8 + 2C12

2 e 2
C_3 = Cl2 cos + C23 sin e

, 2
c23 = c12 sin28+ C23 cos e

C33 C22

3 e sin 8- cos 0 sin 3 _)
C' =- C 1 cos B sin_)+ cos6 sin3e+ C12(cos 314 1 C22

+ 2C44 (cos3e sin e- cos 6) sin3e)

, =_ 3 3
C24 Cll cos e sin3e + C22 cos % sin e + C12(cos 9 sin39 - cos e sin e)

+ 2C44 (cos e sin3e cos3e- sin e)

C34 (C23 C 12 ) cos e sin

, = 2 2 2 2 2 )2
C44 (Cll + C22) cos e sin2e - 2C12 cos _ sin e + C44(cos e - sin e

2 2

C55 C44 sin e + C55 cos e

C56 (C55 C44) cos e sin e

2 2

C66 C44 cos e + C55 sin e

(3.10. lO)

For a lamina whose fibers are oriented at -e the C" or C"
pqrs pq

moduli are obtained by replacing sin e by -sin e in (3.10.10).

therefore that C" is given by
Pq

It is seen
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[cp_] =

' ' -C' 0 0Cll C_2 C13 14

ci2 c_.2 c_.3 -c_4 o o

c_3 c_.3 c;a -c'a4 o o
! _C ! !

C14 24 -C34 -C_t4 0 0

0 0 0 0 C' '55 -C56

0 0 0 0 -C'56 -C'_6o

(3.I0.11)

The results (3.10.10-11) obviously are also valid for compliances

by replacement of moduli by corresponding compliances everywhere.

It should be noted that all of the preceding developments remain

valid for square symmetric layers if the relations (3.10.4b) and (3.10.5b)

are omitted and thus C2323 or C55 becomes an independent modulus.

Finally, it is mentioned that in the case of a general laminate

where each lamina is oriented at some angle, relative to an appropriate

common coordinate system, equs. (3.10.6-7), (3.10.9-10) define the elastic

properties of any lamina with respect to the common coordinate system.

3.10.3 Laminated Plates

Theory of laminated plates and shells is a subject of considerable

engineering importance which has received great impetus by the advent of



340

fiber reinforced materials. A sample of important references is given by

[3.39-451

Here we shall limit ourselves to establishment of differential equa-

tions for a thin lamirnted plate, which is subjected to bending and in-plane

forces. The plate is referred to a fixed cartesian coordinate system

x 1 x 2 x 3, the Xl,X 2 plane being the "reference surface" which need not

be the middle plane of the plate. Fig. 3.10.1a may be regarded as a

typical element of such a plate. Reinforcement direction of the laminae is

th
not specified at the present time and the elastic properties of the m

lamina, referred to the plate coordinates, are denoted C(imj)k_ in general

fashion.

Conventional analysis of laminated plates is based on the

Kirchhoff-Love assumption according to which: A normal to a reference

surface of the undeformed plate remains straight and normal to the deformed

reference surface. The mathematical expression of this assumption is

u 3 = u3(xl,x2) = w(x 1,x 2)

O

u = u (Xl,X2) - x 3 w,
(_ c_ c_

(a)
(3.10.12)

where w and u are transverse and in-plane displacements, respectively,
C_

O
u are in-plane displacements of the reference surface and cc - as well

c_

as other greek subscripts from now on - ranges over l, 2.

The strains ec__ are then given by
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0

¢a8 = c(_8(Xl'X2) + x3 _a_(Xl'X2)

o 1 o o
c = --(u + u )a_ 2 ,_ _,a

a_ _a

(a)

(b)

(c)

(3.1o.13)

0
where _ are the curvatures and ¢ are the reference surface strains.

e(mj th
(m) of the stress ) in the m

We consider the plane part oa6

layer. In view of (3.10.13a) this stress is given by

(m) = c(m) = C (m) e° + x3 _(m) _: (3.10.14)

Since the subscripts range over 1, 2 only, it follows from (3.10.8) that

are given by the following matrix

c(m) ..(m) c(m)
Iiii DI122 1112

(m) ..,(m) c(m)
Cl122 u'2222 2212

c(m) c(m) c(m)
1112 2212 1212

(3.10.15)

or in engineering notation

pq = 1,2,4

c(m) ..(m) c(m4) -Ii u12

c(m) ..(m) c(m)
12 _22 24

c(m) _(m) _(m)
14 t_24 _44

(3. lo. 16)
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Let the laminae be labeled by numbers 1, 2 ..... M starting with

th
the uppermost lamina. The m lamina is between the planes x^ = h

m

x 3 = hm_ 1, the m plane always being further away from the upper face

than the m-1 plane, fig. 3.10.3. The membrane forces N

moments M of the plate are then defined by
aB

and internal

hM

= a dx 3 (a)Na_ h] aB
O

h M

Ma_ h]= x 3 % _ dx 3 (b)

O

(3.10.17)

Insertion of (3.10.14) into (3.10.17) yields the results

O

Na_ = Aa876e76 + Ba_76 K76 (a)

o + Da It (b)Mc_ = Bc_76 ¢ %,6 _576 76

(3.10.18)

where

A_y 6- _ _(m) (hm h (a)m Gc_ %'6 - m-1 )

B 1 _m -(m) (h2 _ h2a_y6 = 2- easy6 m m-1 ) (b)

D 1 _m C (m) (h 3 - h3ma_y6 = "3 a_76 m -I )
(c)

(3.10.19)

In engineering notation
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Apq = m_ C_)(hm - hm_l ) (a)

"mBpq : _ _m C (h2m - h _I ) (b)

_ 1 _) h3Dpq 3 _ C (h3m - m_l ) (c)

(3.10.20)

It should be carefully noted that the h in (3.10.19-20) are to be
m

taken with their proper signs.

Insertion of (3.10.13 b,c) into (3.10.18) gives the expressions

0

= Ac_ _,6No_B u - Bcc w,_ = N (a)y,6 _y6 _ B_

0

= u - Dc_ _ = M (b)M_ B Bc_B y6 7,6 y6 w'eL_ c_B

(3.10.21)

The plate resultant equilibrium equations are

N + p = 0 (a)
_,B cL

M + p = 0 (b)

(3. lO. 22)

where Pc_ and p are loads per unit area in the x 1, x 2 and x 3 direction,

respectively. (The contribution of membrane forces to x 3 equilibrium,

through plate curvature, has been neglected). Insertion of (3.10.21) into

(3.10.22) yields the set of three differential equations
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O

AaBy6 u - Bo. B + p = 0 (a)

O

B u - D a w, a + p = 0 (b)

(3.10.23)

Typical boundary conditions consist of prescription of displacements

and/or force and moment resultants on the plate boundary. The force and

moment boundary conditions are expressed in terms of displacement

derivatives via (3.10.21).

Consider for example the case of a simply supported rectangular

plate with sides a I, a 2 and rigid horizontal support. The boundary conditions

are in this case:

O O O O

u C_ (0'x2) = uc_ (al, x2) = uc_ (xI, 0) = u_ (Xl, a2) = 0

w (0,x 2) = w (a 1, x 2) = w (x 1, 0) = w (x 1, a 1) = 0

Mll (0,x 2) = Mll (a 1, x 2) = M22 (x 1, 0) = M22 (x 1, a2) = 0

where the moments Mll, M22 and M12 should be expressed by (3.10.21b).

The complexity of equations (3.10.23) makes it necessary, in most

cases, to resort to numerical methods of solutiom. When the displacements

O
are known, the strains c and curvatures _ follow from (3.10.13b).

a_ aB

Then the plane stresses o tin) in all layers are determined by (3.10.14).
a_

(m) may be determined from
It should be noted that shear stresses _ 3a

(m) is assumed to be negligibly(re) by equilibrium considerations while a33_C_

small in conventional plate theory.
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The problem may be differently formulated by use of an Airy stress

function to satisfy (3.10.22a) identically (compare e.g. [3.45]).

It is seen that in the general formulation given there is coupling

between in-plane stretching-shearing and transverse bending-twisting.

Thus, for example, a plate which is loaded by in-plane forces, only, will

in general also experience bending and twisting.

We now consider some simplified specific cases of lamination, as

used in practice, and the ensuing simplifications of the plate boundary value

problem. Let it be first assumed that the laminated plate is geometrically

symmetric with respect to its middle surface. By this is meant that to

each lamina on one side of the middle surface corresponds another lamina

which is its mirror image in the middle surface. Such a lamina pair is

shown in fig. 3.10.4. In this event it is convenient to choose the

middle surface as the plate reference surface. The upper lamina is

labeled m and is bounded by the planes x3 = hm_ I, hm, while the lower

lamina is labeled n and is bounded by the planes x 3 = hn, hn_l. The

m,n subscripts conform to the convention employed in (3.10.19-20).

By the assumed symmetry

h =h
n m-i

h = - h
n-i m

(3.10.24)

It follows from (3.10.24) that
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h - h = h - (a)m m-i n hn- 1

h 2 _ h 2 2nm m-l =- (h2n- h _i ) (b)

h 3 - h 3 = h 3 - h3 (c)
m m-1 n n-i

(3. lO. 25)

Let it be further assumed that the laminate is also elastically

symmetric with respect to the middle surface, by which is meant that

C (m) = C (n) (a)
a_y8 a_,6

C "m'=f_ C "n'_) p,q = l, 2, 4 (b)
Pq Pq

(3.i0.26)

A laminate which is both geometrically and elastically symmetric with

respect to its middle surface is henceforth simply called: symmetric

laminate.

It follows from (3.10.19b), (3.10.20b), (3.10.25b) and (3.10.26)

that for a symmetric laminate

B = 0
a_76

B = 0 p,q = I, 2, 4
Pq

(a)

(b)
(3.10.27)

Introduction of (3.10.27) into (3.10.21) and (3.10.23) simplifies these

equations to

o

= AO_ _Na _ 7 6 u (a)y,6

M&_ -Dais6 w,76 (b)

(3. lO. 2 8)
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o
A u + p = 0 (a)

a t_-y6 Y ,_6 c_

D w, - p= 0 (b)
al_ "v6 a_y6

(3. I0.29)

It is seen that for the symmetric laminate the previous general formulation

o
"decouples", i.e. in-plane displacements u

o, and membrane forces Nc__

are determined independently of transverse deflection w and bending

moments M .
am

Equs. (3.10.29b), (3.10.28b), written out in detail, in the

notation (3.10.20), are

Dll W'llll + 4D14 W,ll12 + 2(D12 + 2D44) w'1122

+ 4D24 w,1222 + D22 w,2222 = 0 (a)

MII = _ (DII W,ll + D12 w,22 + 2D14 w,12) (b)

M22 = - (D12 W,ll + D22 w,22 + 2D24 w,12) (c)

(3.10.30)

M12 = _ (D14 W, ll + D22 w,22 + 2D44 w,12) (d)

The symmetric laminate is now further specialized by the assumption

that the laminae are uniaxially fiber reinforced, the reinforcement direction

alternating over O, -O with respect to the plate x I axis, from lamina to

lamina. The relation between elastic moduli of adjacent laminae is then

defined by (3.10.11). In the present case only the moduli (3.10.15-16) are

of interest. It follows from (3.10.11) that
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I C' ' -C' ]

11 C12 14
" = C' ' -C (3 10.31)

Cpq 12 C22 24

C' ' C4414 G24

where C' (0 orientation) are given by (3.10.10). Since Cll C12 C22,pq ' ,

C44 are the same for both kinds of laminae, it follows from (3.10.20 a,c)

and (3.10.25 a,c) that

A2 '1 ' 'c' c44 ] (a)tall'AI2' 2'A44]: h[C I' 12'C22'

h3
- ' C' C' (b)[D11'DI2'D22'D44] i_[C[I C12' 22' 44]

(3.10.3 2)

where h is the plate thickness.

The components AI4, A24, DI4 and D24 depend on the laminae

thicknesses, cannot be expressed in such simple form as (3.10.32) and

should be computed from (3.10.20). However, in the event that the sum

of the 8 laminae thicknesses is equal to the sum of the -8 laminae

thicknesses, it follows from (3.10.20a), (3.10.25a) and (3.10.31) that

AI4 = A24 = 0 (3.10.33)

In this event equs. (3.10.28a) and (3.10.29a) assume orthotropic form.

An important kind of laminate is an odd number of equally thick

laminae with 8, -8 alternating reinforcement direction. The laminate

is evidently symmetric and so the results (3.10.27-30) and (3.10.32)

apply. However, (3.10.33) is not valid.
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A related important laminate is an even number of 8, -0 alternating

laminae of equal thickness. This laminate is geometrically symmetric

with respect to its middle surface, but it is not elastically symmetric,

for in each pair of symmetrically located laminae one is at @ orientation

while the other is at -O orientation. Labeling again the upper lamina in

the pair by m and the lower by n, the relations (3.10.25) remain valid.

Also, in view of (3.10.31)

<311

(3.10.34)

Combining (3.10.34) with (3.10.20) and (3.10.25) we have

r i [ cAll AI2 0 CII 12

[ ' ,[Apq] = AI2 A22 0 = h C12 C22

0 0 A44 0 0 C44

(a)

o B,:][Bpq]= o _2

14 B24 0

(b)

(3.10.35)

[i, Oo1[Dpq]= 2 D22

0 D44

12 2

c_2

%.2

0
O]0

!

C44

(c)
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The components

given by such simple relations as

from

BI4, B24 depend on the laminae thicknesses, are not

(3.10.35 a,c) and should be computed

(3.10.20b).

Establishment of theories of laminated shells on the basis of the

Kirchhoff-Love assumption is similar to development of theory of laminated

plates, though more complicated. The interested reader is referred e.g.

to [3.42-43J , [3.45].
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Table 3.5.1 Elastic Properties of Fiber and Matrix Materials

Elastic Moduli in 10 6 psi, v - nondimensional

Fiber

Matrix

(typical)

Material

E-Glass

S-Glass

Beryllium

Carbon

Boron

E v G

10.5 0.20 4.38

12.4 0.20 (?)

44.0 0.09 20.18

ss.o (?)

60.0 0.20 25.00

k

7.29

24.83

41.67

Epoxy _ 0.50 0.35 0.185 0.617

Magnesiuml 6.5 0.35 2.41 8.03

i

Aluminum 1 10.3 0.33 3.87 10.73
t
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4.1 QUASI-STATIC LINEAR VISCOELASTICITY

4. i. 1 Stress-Strain Relations

In the present chapter we shall give a brief discussion of linear visco-

elasticity theory. For more detailed expositions the reader is referred to [4. i-3 ].

A linear viscoelastic material may be defined as a time dependent material

in which the displacements and strains are small and effects may be superposed

in time according to the Boltzmann superposition principle.

Let the displacements, strains and stresses be space and time dependent

and be denoted u. (x_,t), e..(x__,t) and _.. (x_,t) respectively. The strains and
i i] i]

displacements are related by

1

_1] (x_,t) = _-- (u. (x,t) + u. (x,t)) (4. i. 1)"' 1,j -- ],i --

The most general anisotropic stress-strain relations are

t _¢kl(X--'T )aij(x_,t) = Cijkl(X_, t - 7) _T dT (a)

t
_kl (x, _)

¢ij(x_,t) =/Sijkl
toO3

dT (b)

(4.1.2)
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The first of these will be referred to as the viscoelastic stress-strain relation

and the second will be referred to as the viscoelastic strain-stress relation.

The functions Cijkl and Sijkl

former are known as relaxation moduli

define the material behavior. The

and the latter as creep compliances.

Both are components of fourth rank tensors. If C and S are not space
ijk 1 ijkl

dependent the viscoelastic body is homogeneous ; otherwise it is nonhomogeneous.

Symmetry of the stress and strain tensors leads to

Cij kl (t) = C.ik 1 (t) = C. Ik (t) (a)] zj

(4.1.3)

Sijkl(t) = S.ikl(t)] = Sijlk (t) (b)

Blot [4.4] (see also [3.25], chap. 13) has shown that if Onsager's

principle is assumed valid for viscoelastic materials, then

Cij kl (t) = Cklij (t) Sij kl (t) = Sklij (t) (4.1.4)

It appears, however, that the symmetry relations (4.1.4) are not as universally

accepted as their elastic analogues (last equalities in (3.2.3) and (3.2.5)).

For discussion of this subject see e.g. [4.5]. In the present work the

validity of (4.1.4) shall be assumed.

The functions Cijkl and Sijkl are obviously related, for if a. as givenz]

by (4.1.2) is introduced into the right side of (4.1-2/9 the strains on both

sides must be the same. It is, however, inconvenient to relate Cijkland Sijkl

in this fashion. A better way of doing this will be described later.
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A physical interpretation of relaxation moduli and creep compliances is

given in terms of responses to step function inputs. Suppose that we impose

the strain

¢, (t) o• = _.. H(t) (4.1.S)
t] i]

where H(t) is the Heaviside step function which is defined as

0 t<OI

H(t) = ] (4.1.6)

! 1 t_>O

Insertion of (4. i. 6) into (4.1.2) and taking cognizance of the fact that the

derivative of H (t) is the delta function, 6(I:),yields

_ij(t) =Cilkl(t ) Oekl (4.1.7)

Dually, if we impose the stress variation

(t) o= o., H(t) (4.1.8)
ij l]

then (4.1.3) yields

¢ij(t)= Sijkl(t)OOkl (4. i. 9)

It is seen that relaxation moduli are given by the stresses produced by time

constant strains, and creep compliances are given by strains which are

produced by time constant stresses. This indicates the type of experiments

which have to be performed to measure relaxation moduli and creep complfances.
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The stress-strain relations (4. I. 2 ) may be derived by starting out

with (4. i. 7), (4. i. 9) by use of the Boltzmann superposition principle. Such

a procedure will be used later below in order to derive the effective stress-

strain relations of viscoelastic heterogeneous materials.

We now examine the important cases of discontinuities in time of

the strain or stress variations in (4.1.2-3). Since at this time we are only

interested in time variation at a typical point there is no need to incorporate

the space variation into the stress-strain relations.

Consider the case of a strain which is suddenly applied at time t=0,

and varies continuously from there on. Such a strain may be written

_ij (-_,t)

0 t<O

_.. (t) t ->0
1]

It is seen that there is a discontinuity at t=0.

I

¢ij (-_,t) = ¢ij (o) H(t) + ¢ij (t)

where e_. is continuous and vanishes for t < 0.
i]

(4.I.i0)

Let the strain variation be written

Then

e.. _¢'.. %el.
1] =- ¢.. (o) 6 (t) + _.!1_ ¢.. (o) 6 (t) + __!1_ (4.1.11)

t z] ;) t z] _ t
t_O+

Inserting (4.1.11) into (4.1.2) we have
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t

_¢kl d_ (4.1 12)(_ii.(t) = C ij kl (t) eel (o) + C ij kl (t-T) _----_

o+

If the last integral in (4.1. i2) is integrated by parts we obtain the equivalent

form

t

(_ij (t) = Cl]kl(O).. ¢kl(t) + / _Ci_kl(_)%_ Ckl(t-_) dT

o+

We shall find it more convenient here to use the form (4.1.12).

If we impose the discontinuous stress variation

ij (-_ ,t)

0 t< 0

q..(t) t m 0
i]

(4.i.13)

then by similar reasoning

eij (t)= Sijkl(t) Okl(O)

t

+ / Sijkl(t-T )

o+

_kl

_T
d_ (4.1.14)

It is seen from (4.1.ii) and (4.1.14) that

oij (o) = Cijkl(O) _kl(O) (a)
(4. i. 15)

eij(o) = Sijkl(°) (_kl(o) (b)

These expressions define the initial (elastic)responses of the viscoelastic

material.
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It is often convenient to write (4. I. i0) and (4. I. 14) in a more

simplified form. It is easily seen that these relations may formally be written

dT (a)(_ij(t) = cij kl (t-T)
0

t

5 Ckl dT (b)¢ij (t)= Sijkl (t-T) _ T

O

(4.1.16)

¢ij = Sijkl e d_kl

We shall use this notation whenever convenient.

(4.i.i7)

Insertion of (4. I. I0) into (4. i. 16a) and of (4. I. 13) into (4. i. 16b) recovers

(4. i. 12) and (4. i. 14). Thus (4. I. 16) are general viscoelastic stress-

strain relations for strain or stress inputs which vanish for t < 0, with the

understanding that delta functions are permitted to occur in the integrands.

The representations (4. I. 16) also remain formally valid for a number of

discontinuities at different times.

Integrals of type (4. I. 16) are called hereditary integrals or convolutions.

For simplicity of writing, such integrals or their more detailed versions (4. I. ii)

and (4. i. 14) are frequently expressed in the forms

(_ij = Cij kl ® d _kl
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If the viscoelastic material is isotropic the stress-strain laws (4. i. 16)

are reduced exactly as for Isotropic elastic materials. It is convenient in this

case to split stresses and strains into isotropic and deviatoric parts in the

usual fashion. Thus

1

¢ij ¢ 6 + e , _ (a)ij ij "3- Ckk

1

<lij= q6ij + sij ' q = -3 qkk (b)

(4.i.18)

Then (4. i. 16) for the isotropic case assume the forms

t

(t) = 3 K (t-T) _ dT

o

t

s ij (t)=2fG (t-T) dT

O

t

i f _ye (t)='T l(t-_) _ dT

o

(a)

(b)

(c)

t 5s..

eij (t)=-_- J (t-T) _ST dT (d)

(4. i. 19)

o

Here K(t) and G (t)are the bulk and shear relaxation moduli, respectively, and

I(t) and I(t) are the bulk and shear creep conpliances, respectively.
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The stress-strain relations of a transversely isotropic viscoelastic

material are similar to (3.4.86). Let x 1

We then have in the notation (4.1.17)

be the axis of elastic symmetry.

C_ll = u o dell + _ o d_22 + _ o d_33 (a)

q22 = _ o dell + (k + G T) o d¢22 + (k-GT) e d_33 (b)

033 = _ e d_ll + (k - G T) ® d¢22 + (k+GT) o d¢33 (c)

_12 = 2GA o d¢12 (d)

c_23 = 2G T o d_23 (e)

o13 = 2GA o d 13 (f)

where _(t), _,(t), k(t), G T

(4.l.z0)

(t) and GA(t) are the five relaxation moduli of the

material. It is similarly possible to write a strain-stress relation in terms

of five creep compliances but this will not be done at the present time.

For reasons of mathematical expedience viscoelastic stress-strain

relations are frequently expressed in terms of differential time operators,

Limiting ourselves to the isotropic case we can write such stress-strain

relations in the form

R(D) o = S(D)

P(D) sij = Q (D) ei.]

where

(a)

(b)
(4.1.z 
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d
n --

dr

DmR (D) = Rm

m=O

S(D) =_-_ Sm Dm

m=0

(4.1.22)

P

P (D) = _ Pm Dm

m=0

q

Q(D) = _ Qm Dm

m=0

Here R , S , P , Q are constants and
m m m m

m dm
D =

dtm

To each differential operator stress-strain law belongs a set of initial

conditions. Methods to derive these may be found in [4.6], par. 15.6.

The simplest examples of (4.1.21-22) are the so-called Maxwell and

Kelvin models, whose deviatoric stress-strain relations are, repectively,

S

Deij = 2-@ + 1-!-2GDsij (a)

sij = 2Geij + 2T_ Deij (b)

(4.1.23)
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Any viscoelastic differential operator stress-strain relation can be

represented by an appropriate spring-dashpot model.

It should be carefully noted that (4. i. 19) are much more fundamental

than (4.1.21) since they are based on measured viscoelastic functions. It

can be shown that relations of type (4.1.21) can always be brought into

the form (4. i. 19) while the converse is not necessarily true. To see this we

define relaxation moduli associated with (4.1.2 i) by the stress variations

due to strain step functions. Similarly, creep compliances are defined by

strain responses to stress step functions. Thus the relaxation moduli and

creep compliances are given by certain solutions of the differential equation

(4.1.21). Having obtained these viscoelastic functions the responses to

any strain or stress variations are found by superposition as integrals of

form (4.1.19).

Evidently, the relaxation moduli and creep compliances associated

with (4.1.21) willcontain the constants R , S , P and Q . To find the
m m m m

constants the differential operators must be arbitrarily terminated at some m

and the constants are then found by fitting of the theoretical viscoelastic

functions to the experimental results at a number of points. To obtain a

realistic presentation the differential operators may become lengthy. The

simple operators contained in (4.1.23) can certainly not be expected to

represent real materials with sufficient accuracy and their use can only

lead to qualitative results.
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It should be mentioned that elastic stress-strain laws are co_tained

as special cases in viscoelastic stress-strain laws. Elastic moduliand

compliances may be interpreted as relaxation mod,li and creep compliances

in the form of step f_]nctions. Thus

Cijkl (t) = eCijkl H(t) (a)

(4.1.24)

Sijkl (t) e= Sijkl H(t) (b)

where elastic properties are here and heaceforward denoted by a left e

superscript. Insertion of (4.1.24) into (4.1.16) yields the elastic stress-

strain laws

all (t) e (t)= Cijkl ekl

eli (t) e _kl (t)' = Sij kl

(4.1.25)

For stress-strain relations of type (4.1.2 i) , elasticity implies that all

constants except Ro, So' Po and Qo vanish in the differential operators.

In many isotropic viscoelastic materials viscoelastic behavior is

predominant in shear and negligible in dilatation.

and (4.1.21a) simply become

(t)= 3eK ¢ (t)

while (4.1.19b,d)and (4.1.21b) stay as they are.

In this case (4.1.19a,c)

(4.1.z6)
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A most important tool in linear viscoelasticity theory is the Laplace

transform. We shall use the notations

CO

(P) = / e-Pt%0 (t) dt (4.1.27)
Z

O

for the Laplace transform, abbreviated LT from now on. We recall that the LT

of a convolution is given by

t

(9 o dg) =_ [f_(t-T) _(T) dT]= _(p) _ (p) (4.1.28)

O

The LT of the stress-strain laws (4.1.11), (4.1.14) or (4.1.16)

then assume the form

_ij (p) = p Cijkl (p) Ckl (p) (a)

(4.1.29)

_' (P) = P S (P) _kl (p) (b)
ij ij kl

where (4.1.28) and the rule for the LT of a derivative have been used. It is

A A

seen from (4.1.29) that the tensors PCijkl and p Sijkl are reciprocal. Thus

2 ^ ^ (4 1.30)
P Cijrs Srskl = Iijkl

where Iijkl is the unit tensor given by (3.2.7). (Provided that Cijkl(t) and

Sijkl(t) are ij,kl symmetric ). Expression (4.1.30) provides a relation between

relaxation moduli and creep compliances which assumes a complicated form in

the time domain. Suffice it is to say that if the relaxation moduli are known

the creep compliances must be found by solution of integral equations.
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We introduce the notation

A

p C ijkl (p) : rijkl (p)
(,-.1.31)

_ij (p) : qJ kl (p) _kl (p)
(4.1.32)

which is similar to an elastic stress-strain law.

called transform domain (abbreviated-TD) moduli.

The LT of (4.1.19) is given by

o=3p e=3_e

A & A A

= 2p e i = 2F e..S ij j z]

Therefore Fij kl

(a)

0_)

e = -_-p o (C)

(p) will be

(4.1.33)

eij = -_-p sij (d)

where

t%

K (p) = p K (p) (a)

F(p) = pG (p)

are the TD bulk and shear modulus. It follows from (4.1.33) that

p KI=I (a)

2 ;% 4%

p OJ=l (b)

(4.1.34)

(4.1.35)

Consequently the TD bulk and shear compliances are i/_ and I/F.
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We can define other TD moduli just as in elasticity. As an example

we consider the TD Young's modulus, which is denoted pE and _. is the LT

of the Young's relaxation modulus. Suppose that a cylinder is subjected

to the space constant uniaxial state of stress

[o (t)] =
ij

I Oll(t) 0 O]

0 0 0

: 0 0 0

with transform

Or 11PO00
A

We define pE as

A

(7
^ ll

pE-
_Ii

(4.1.36)

Separation of the transformed uniaxial stress into isotropic and deviatoric

parts and insertion into (4.1.33a,b) easily yields ¢
11"

Then we have from

(4. i. 36).

E=
3_+_ (4. i.37)

Inversion of (4.1.36) into the time domain yields in view of (4.1.28)
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t 8e

Oil(t)= fE(t-_) ii d_, (4.1.38/

0

which is the uniaxial stress-strain relation. Note that the relation (4.1.37)

is very complicated in the time domain.

We can formally define a TD Poisson's ratio by analogy with elasticity,

in the form

'_(p)=
_22 _33

A #.

¢ii ¢Ii

It follows just as in elasticity that

v(p) -3K(p) -2G(p) = 3<(p)-2F(p) (4.1.39)

2 [3K(p)+G (p)] 2 [3_(p)+F(p)]

The LT of (4.1.20) leads to the TD stress-strain relations

$ii = P_$11 + P_e22 +P_ 3 (a)

_22 = p_̂ i'ii+ p (k+GT)^^ _22+ p (k-GT) ^¢33 (b)

A A A ,,% _ _ A% S%

a33 = P_ $ii + P(k-GT) e22 + P(k_3T) ¢33 (c)

$12 ^ "= 2p G A el2 (d)

(4. i.401

A

_23 =2P G T ¢23
(e)

_13 ^ ^= 2p GA _13 (f)



400

are

The LT of differential operator stress-strain relations of type (4.1.21-22)

R(p) 8 = S(p) ¢ (a)

P(p) s.. = Q(p) e. (b)
iI z]

(4.1.41)

The residual terms at t=0 in the evaluation of the LT of the derivatives on

both sides of (4.1.21) cancel out because of the initial conditions, [4.6],

par. 15.6. Comparing (4.1.41) with (4.1.33) we see that in the present case

i S(p)(p) = pK - (a)
3 R(p)

1 9/_ (b)
r(p)=p_- 2 P(p)

(4.1.42)

Equations (4.1.42) define in a simple manner the relaxation moduli associated

with the differential operator stress-strain law.

We illustrate the use of (4.1.42) to find the relaxation shear modulus

and creep compliance for the Maxwell stress-strain relation (4.1.23a). It

follows from (4.1.23a) and (4.1.42b) that

GM (p) = 1] (4.1.43o)l+Tp

where M denctes Maxwell and T = I]/G is a characteristic time which is called

A

relaxation time. It follows from (4.1.35b) and the result for GM(P) that

_ 1 + 1
J M (p) Gp

lip

(4.1.43 b)
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Inversion of (4.1.43a,b) yields

G M

-t/T (a)
(t) = G e

(4. i. 44)

1 t (b)
I M (t) ='_ H(t) + _-

4. I.2 Boundary Value Problems

We consider the case of a viscoelastic body in the absence of body

forces. Since the stresses and displacements are time dependent there are

in principle inertia terms in the equilibrium equations. We adopt the usual

assumption that changes in time are so slow that these inertia terms can

be neglected. Then the equilibrium equations are

(x_,t) = 0 (4.1.45)
ij ,j

in which the time appears only as a parameter. This kind of approximate

static equilibrium state is called quasi-static.

To obtain differential equations for the displacements, (4.1.16a) are

substituted into (4.1.45) . The result may be written

(Cijkl ® dUk,l),j = 0 (4.1.46)

where ¢ have been replaced by (4. i. i), the symmetry (4.1.4) has been
kl

taken into account and the notation (4. l. Ta) has been used. If the body is

homogeneous, C are not space dependent. Equ. (4.1.46) can be written as
ijkl
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t

b 2 _Uk (x_, T) dq_ 3_Xl_X j If Cijkl (t-') _T
O

= 0 (4.1.47)

Boundary conditions associated with (4.1.46) or (4.1.47) may be of

the type

O

U i (S,t) = u i on S (a)U

0

T.I (S,t) = T i on ST (b)

(4.1.48)

or we may have the mixed kind of boundary conditions of type (3.6.18).

If the body is heterogeneous then (4.1.46) or (4.1.47) must be satisfied

(m) and there are added the interface
in each phase with relaxation moduli <]ijkl '

conditions

u. (x_,t)
1

continuous on Sin t (4.1.49)

T i (x,t)

The boundary value problem as expressed above is exceedingly complicated

if considered in the space-time domain. Great simplification is achieved if all

quantities are Laplace transformed with respect to time. Listing the LT of

(4.1.47-49) we have

P CijklGk,lj = 0 (4.1.50)

^ ^0

u. (s,p) = u . on S (a)
1 1 U

^ ^0

T.1 (S,p) = T 1 on S T (b)

(4.1.51)
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where

A

u (Z__,P)
i

o.

T. (x_,p)
1

continuous on Sin t

(c)

(d)

A _ A

= C iTi P jkl Uk,1 n.l (4.1.52)

Comparison with the formulation of elasticity problems in chapter 3.9.

A

shows that we have formally obtained an elastic problem for u. in space -p
1

A

domain in which the TD moduli POijkl = Fijkl assume the role of elastic

moduli. If more convenient, p Sijkl can be taken as the TD compliances,

in view of the reciprocity relation (4.1.30). This "elastic" problem is

generally called the associated elastic problem. Thus a convenient method

of solving linear quasi-static viscoelastic problems is to solve the associated

elastic problem which yields the transforms u. (x, p) and _ (x_, p) of the
i l]

viscoelastic solution. Then inversion of the LT gives the viscoelastic solution.

It should be emphasized that it has been tacitly assumed that the

temporal change of external and internal boundaries can be neglected.

The analogy described above is known as the correspondence prin_ciple.

We shall refer to it as the static correspondence D[inciple since we shall

later describe a dynamic correspondence principle. The static correspondence

principle has been gradually developed by a number of writers (see [4.7] ).

If the material is isotropic the associated elastic problem is also

concerned with isotropic materials which are now described by the TD moduli

(4 i. 34).
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If the viscoelastic material behavior is described by differential

operator stress-strain relations of type (4.1.21), the TD moduli in the

associated elastic problemare given by (4.1.42).

We shall now exploit the correspondence principle to extend the

solution for homogeneouselastic bodies of arbitrary shape, under homogeneous

boundary conditions, par. 3.2.2, to viscoelasticity. Let a homogeneous

viscoelastic body be subjected to the boundary displacements

O

¢ ..(t)x. t _ 0
i] J

u. (S,t) =
1

0 t<O

(4. i. 53)

Then

^ ^0
u. (S,p) = ¢ .. (p) x. (4.1.54)

z z] ]

The associated elastic problem is now to find the elastic fields in an elastic

A

bodywith"moduti'PCijkl, subjected to (4.1.54). By par. 3.2.2 the solution is

^0

^ (x,p) = e .. (p) x. (a)
ui -- ij }

(4. I. 55)

^ ^ ooij (x_,p) = PCijkl(P) _ j (p) (b)

Inversion into the time domain gives
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0
u (x, t)= e (t) x
i ij j

0

,.. (x_, t) = ¢ (t)
I] ij

t>O

t
d _kl (T)

oij (x_,t) = / Cijkl(t-T) de

O

dT = o (t) (4.1.56)
ij

u. (x, t), e.. (x, t), o..(x, t) =0 t < 0
z l] i]

It is seen that the strain and stresses are space constant (homogeneous) and

time variable.

Next, let the viscoelastic body be subjected to the bo,]ndary tractions

T. (S,t)
i

0
_., (t) n. t>O

0

(4.1.57)

The n

^ ^0
T. (S, p) = o (p) n (4.1.58)

ij j

It is now convenient to consider the associated elastic problem as an elastic

^

body with TD compliances p Sijkl(P) • By par. 3.2.2 the solution is

^ ^0
c_..(x, p) = o (p) (a)
U ij

(4. i. 59)

^ ,,0

eij^ (x,p) = PSijkl(P) °ij (p) (b)
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The inverse transform is

(x_,t)= o (t)
ij ij

t

(x,t) = /Sij kl (t-T)¢ij --

O

O

d(; kl(T)

dT
aT= g

1]
(t)

(a)

(b)

(4. i. 60)

with displacements

_.(x_,t) = _.. (t)x.
l i] ]

(c)

Expressions (4.1.60) are defined fort > 0 a,'id vanish for t < 0. Thus agai_,

the strain and stresses are spatially homogeneous and time variable.

Accordingly, boundary conditions (4.1 .54) and (4.1.57) may be called

homogeneous boundary conditions for viscoelastic bodies.
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4.2 GENERAL QUASI-STATIC THEORY OF VISCOELASTIC COMPOSITES (*)

4.2.1 Definition of Effective Viscoelastic Properties of Composites

The definition of effective viscoelastic properties of composites is closely

related to that of effective elastic moduli of composites, as discussed in

chapter 3.3.

Suppose that a composite of volume V and surface S consists of two or

th
more homogeneous viscoelastic phases. The properties of the m phase are

specified by relaxation moduli C (m) (t) or by creep compliances S (m) (t) It is
ijkl ijkl "

assumed that the phase geometry is statistically homogeneous and that internal

and external geometry changes remain small.

The composite will be subjected to homogeneous boundary conditions of

type (4.1.53) and (4.1.57). We recall the fundamental postulate of the theory

of heterogeneous media as given in par. 3.2.2 and we extend it to the visco-

elastic case: The stress and strain fields in a very large SH viscoelastic

heterogeneous body, subiected to homogeneous boundary conditions are spatially

SH, except for a narrow boundary layer near the external surface. It will be shown

later below that the postulate for the viscoelastic case actually follows from the

postulate for elastic heterogeneous media.

The composite is first subjected to a special homogeneous boundary

condition of type (4.1.53)

(*)The theory presented in chapter 4.2 is based on references [4.8-9J.
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O
u. (S,t) = _ .. H (t) x. (4.2.1)
i I] ]

0
where H(t) has been defined by (4.1.6) and ¢ .. are constant.

11

the average strain theorem,(3.1.18),that in the present case

It follows from

¢.. (t) = ¢o.. H(t) (4.2.2)
U 11

Because of SH (4.2.2) are also the local RVE strain averages.

Since the differential equations of the viscoelastic phases, (4.1.47),

are spatially linear it follows by the same kind of argument as given in par.

O
3.3.1 that the average stresses are linearly related to ¢

ij
In general

- _jkl(t) o =G (t) (4 2.3)(_ij (t) = C ¢ kl ij kl Ckl

t>_O

The coefficients C ijkl(t) are defined as the effective relaxation moduli (ERM)

of the composite, [4.8]. It is seen that this definition is completely analogous

to (4.1.5-7) for homogeneous viscoelastic media.

If the homogeneous boundary conditions are (4.1.53) then by the average

strain theorem (3.1.18)

- 0

¢.. (t) = ¢ (t) (4.2.4)
I] ij

For this case _. (t)can be constructed from (4.2.3) and the Boltzmann super-
l]

position principle. We have

t o t ]

f fC_jkl (t-r)
. de kl(Z) dT = d_kl(T) dT

(_ij (t) = Cijkl(t-Q dT dT

o o i
(4.2.5)
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which is the effective viscoelastic stress-strain relation of the composite. For a

SH composite the averages in (4.2.5) are local over RVE as well as body averages.

It should be noted that (4.2.5) also holds for any heterogeneous viscoelastic

body, not necessarily SH. In that case the averages are just body averages.

Dually, the composite is subjected to a special homogeneous traction

bou nda ryc o ndit ion

T. (S,t) = G°. H(t) n (4.2.6)
i l] j

It follows from the average stress theorem, (3.1.35), that

5.. (t) = q°. H(t) (4.2.7)
i] I]

and by SH these are also RVE averages. It follows by linearity that the average

strains are linearly related to the average stresses. This is expressed as

- * o = Sijkl(t) (4.2 8)eij (t) = Sijkl(t) Okl Okl

t_ 0

The S
ijkl

(t) are defined in analogy to (4.1.8-9) as the effective creep compliances

(EGG) of the composite.

If the traction boundary condition is (4.1.57) , it follows from (4.2.7-8)

and the Boltzmann superposition principle that

I I o d kl( )
_ . do kl(T) .

e. (t)= S (t-T) --- :l dTi zj ij kl d o dT S ij kl (t-T) dT0

(4.2.9)
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which is the effective strain-stress relation of the composite. This is again

a perfectly general result for any heterogeneousbody under homogeneous

boundary conditions. For SHthe body averages in (4.2.9) are also local RVE

averages.

Equs. (4.2.5) and (4.2.9) are the most general stress-strain relations

for viscoelastic SH composites. Using arguments similar to the ones given in

par. 3.3.2 for reoiprocity of EEMand EECtensors, it follows in the present

case that e, and _.. in (4.2.5) and (4.Z.9) may be taken as the same
9: e

and S (k_are related as in a homogeneousquantities. Consequently Cijkl(t) ij

viscoelastic body. Again it is convenient to express this relation by LT as

was done in (4.1.30). This is postponed to the next paragraph.

Because of the symmetry of the average stress and strain tensors it

follows from (4.2.5) and (4.2.9) that

................................................, 9: 9: 9:

j c ijkl(t)= C jikl(t)= C ijlk(t)
i

9: 9: 9:

S (t)= S (t)= S (t)
ijkl jikl ijlk

If (4.1.4) is accepted then it is easy to show that also

(a)

(b)

(4.z._o)

* 9:

= c (t)
O ij kl (t) klij

(a)

(4.2. ii)

* 9:

= S (t) (b)s ijkl(t) klij

The proof is very similar to the one given in par. 3.3.2 for EEM and EEC. We

express the average stress in the left side of (4.2.3) by (4.1.16a) and then equate

to the right side of (4.2.3).
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t

- f _ * _

aiJ (t) =TCijkl(X--' t-T) -_T Ckl (x'T) dT = Cijkl(t) Ckl

O

where Cijkl(X_,t) denotes the variable (piecewise constant) relaxation moduli

of the composite. It follows that

t

* * - / 5 (x_,T) dT(C ijkl - C klij) Ckl = [Cijkl (x,t-T) - Cklij (x_,t-r) ] -_- Ckl

O

Now the integrand on the right side vanishes because of (4.1.4) and therefore

the left side vanishes. But since Ckl are arbitrary this is possible only if each

coefficient of ¢.. vanishes and this proves (4.2.11a). The proof of (4.2.11b)
1)

is evidently analogous.

For various cases of macroscopic symmetry such as orthotropy, square

symmetry and transverse isotropy, the general stress-strain relations (4.2.5)

and (4.2.9) may be simplified just as effective elastic stress-strain relations.

Thus for macroscopic orthotropy (4.2.5) assume by analogy with (3.4. i-2) the form

all(t) = C 11 ® d_ll + C 12 ® d_22 +C13 ® d_33 (a)

o22(t ) = C12 ®dell +C22 ®d_22 +C23 ®d_33 (b)

o33(t ) =C13 ®d_ll +C23 ®d_22 +C33 ®d_33 (c)

(4.2.12)
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-- W

_12 (t) = 2C 44
® d_ (d)

12

023 (t) = 2C 55 ® d _2 3 (e)

-- W

q13 (t) = 2C 66 ® d_13 (f)

Here C (t), C
ii 12

(t)etc. are the ERM and we have used the shortened convolution

notation (4. i. 17).

The strain-stress relations may be simply written by analogy with

(3.4.5-6) in terms of ECC
S ll(t), S 12

etc.

For macroscopic transverse isotropy we have by analogy with (3.4.47-48)

and (3.4.51-55)

-- * * * --

ql 1 (t) = n ® d_ 11 + _ ® d_22 + _ ® d e33

-- W -- W * -- * W

(_22(t) = _ ®dell + (k +G T) ® de22 + (k - G T) o d_33

-- W -- W W -- W W

o33(t) = Z ® dell + (k - G T) ® de22 + (k + G T) ® d_33

q12 (t)= 2G A e d_12

(4.2.13)

;23 (t) = 2GT ® d¢23

;13 (t)= 2G A ® d;13
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* * * * *

where n (t), _ (t), k (t), GT(t) and CA(t)are the five ERM of the material.

Homogeneous boundary conditions appropriate for computation of the ERM

in (4.2.12-13) are of type (4.2.1). Thus all the boundary conditions in

chapter 3.4 are transcribed to the viscoelastic case by multiplying their

right sides by H(t) . For example: For k (t)definition (see (3.4.59-61))

u I(s,t)= 0 u2 (s,t)= _°H (t)x2 u3 (S,t)= °H (t)x3

i Ooo][ _ij (t) ] = _ 0 H (t)

0 o

- _3 3 (t) * o022(t) = = 2k (t) ¢

If ¢°H(t) in the boundary conditions is replaced by ¢°(t), t > 0, then

t

- 2 3 f * d¢°d, (_)o2 (t) = q3 (t) = 2 k (t-T) dT

O

4.2.2 Static Correspondence Principle for Viscoelastic Composites

We now proceed to derive a correspondence principle for viscoelastic

composites which will enable us to find effective relaxation moduli and effective

creep compliances on the basis of known effective elastic moduli. The theory

developed also leads to the general results of par, 4.2.1 in independent fashion.
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Consider a viscoelastic composite which is subjected to the homogeneous

boundary conditions (4.1.53). We summarize the Laplace transformed problem

in the manner of (4.1.51-52).

p6(m) =0 inR (a)
ijkl Uk,lj m

^ AO
u.(S,p) _ ¢,, (p) x, (b)
l l] ]

U.
1

continuous on Sint.

(c)

A ^

p Cijkl Uk, 1 nj (d)

(4.2.14)

The transformed stress is given by

^(m) (x_,p) P _(m) ^(m)
<_ij = _ijkl (p) Ckl (x,p)_ in Rm (4.2.15)

Suppose that we wish to compute the average of _. (x,p) It is seen
1]

that this is precisely the problem which arose in the computation of average

stresses in elastic composites for purpose of computation of EEM, pars. 3.3.1-2.

We may regard (4.2.14) as a problem for an associated elastic composite whose

phase "elastic moduli" are the previously defined TD moduli

^ (m)
_(m) (p) P (4.2 16)
I ijkl = Cijkl (P)

By the linearityargument of par. 3.3.1 we can write the average of(4.2.15) as
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* * * * *

where n (t), _ (t), k (t), GT(t) and OA(t) are the five ERM of the material.

Homogeneous boundary conditions appropriate for computation of the ERM

in (4.2.12-13) are of type (4.2. i). Thus all the boundary conditions in

chapter 3.4 are transcribed to the viscoelastic case by multiplying their

right sides by H(t) . For example: For k (t)definition (see (3.4.59-61))

H (t)x 3ul(s,t)=0 u2(s,t)= _°H(t)x2 u3(S,t)= o

[_ij(t)] = _ H (t)
0 o

- $33 (t) * o_22(t) = =2k (t) e

If ¢°H(t) in the boundary conditions is replaced by cO(t), t > 0, then

t

$22(t) = $33(t) = z/k*(t-T)d¢°(T)dT dT

4.2.2 Static Correspondence PrinciDle for Viscoelastic Composites

We now proceed to derive a correspondence principle for viscoelastic

composites which will enable us to find effective relaxation moduli and effective

creep compliances on the basis of known effective elastic moduli. The theory

developed also leads to the general results of par. 4.2.1 in independent fashion.
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;% A
-- ^* ^0 ^ W --

oij (p) = p Cijkl (p) ekl (p) = p Cijkl (p) ekl (p) (4.2.17)

^*

where p C ijkl(P) are for the time being arbitrary coefficients and the last

equality in (4.2.17) is due to the average strain theorem applied to the

transformed strains in the associated elastic composite.

If the viscoelastic composite is SH then the associated elastic

composite is also SH since SH is a property of the phase geometry only and

the Laplace transformation operates only on the time variable. Consequently,

A*

pC may be defined as the "effective elastic moduli" of the associated
ij kl

elastic composite by the arguments of par. 3.3.2, They may also be called

the effective TD moduli. Thus

* ^*

Fijkl(P) =p Cijkl(P) (4.2.18)

If the homogeneous boundary condition is chosen in the special form

O

(4.2. I) then the average strains are
ij

o
H(t) with LT ¢../p.

13

transformed average strains into (4.2.17) yields

Insertion of the

- '_* 0

_ij(P) = C ijkl(P) ¢ kl

with inverse transform

- * 0 * -

°ij(t) = Cijkl(t) Ckl = Cijkl(t) Ckl

t>O
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which is the same as (4.2.3) .

inversion of (4.2.17) is

Thus C ijkl(t) are recognized as the ERM.

t

- / * dCkl(T) dTqij (t) = C ij kl (t-_) dT

O

The

which is the same as (4.2.5).

Effective viscoelastic stress-strain relations for various cases of

macroscopic symmetry have been given in par. 4.2.1. Such reductions may

also be easily performed on the basis of present developments in terms of

transformed quantities. The effective TD stress-strain relation (4.2.15) may

be reduced on the basis of symmetry considerations precisely as an effective

elastic stress-strain relation and so the results of chapter 3.4 are directly

applicable. Inversion then produces viscoelastic stress-strain relations as

written in par. 4.2.1.

For example: in the case of transverse isotropy (4.2.17) involves only

five effective TD moduli and may be written

A_ ^. _A _,. -̂ .,.,,

(711 = pn ell + P£ ¢22 + p_ ¢33 (a)

_^ _. _^ _, -., _:_ ^, ^ * _^

_22 = p_ ¢ii + p(k + GT) ¢22 + p(k -O T) ¢33 (b)

(733 = p_ ¢11 +p(k - G T ) ¢22 + p(k +G T) _33 (c)

(4.2.19)
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^. __

12 = 2p G A ¢12 (d)

_23 = 2p G T ¢23 (e)

c13 = 2p G A ¢13 (f)

A* ^* ^* ^* _*

where pn , p_ , pk , pG T and pG A are TD effective moduli. Inversion of

(4.2.19) produces (4.2.I3).

We shall now derive a correspondence principle which directly relates

effective elastic and viscoelastic properties, [4.8]. Let the EEM of an

e * e_(m)

elastic composite and the phase moduli be denoted C ijkl and Uijkl ,

respectively. We write symbolically

e * = ec* (m)
Cijkl ijhl (e-C , {g_) (4.2.20)

where the first term in the parenthesis denotes phase moduli and the second

term denotes phase geometry. It follows for the associated composite that

* e *
Fijkl(P) = C ijkl [--F(m)(P)' {g] "_ I (4.2.2 l)

Equ. (4.2.21) states the static correspondence principle for viscoelastic

composites. In words: The effective TD moduli of a viscoelastic composite

are obtained by replacement of phase elastic moduli by TD p,_hase moduli in the

expressions for the effective elastic moduli of a composite with identical

phase ge_ometry.
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Once Fijkl

l ..................................................................................

* -I i *

Cijkl{t) = _ [ _- rijkl (p) j

where _-l denotes the inversion of the LT .

in (4.2.21) are known it follows from (4.2.18) that

(4.2.22)

The correspondence principle described above is valid for a general

anisotropic composite with general anisotropic phases. If the phases are

isotropic the phase TD moduli have the form (4.1.34) if the phases are

described by stress-strain relations of type (4.1.19). If the phase stress-

strain relations are of type (4.1.2 1-22) then the phase TD moduli are given

by (4.1.42).

It should also be noted that if the displacement, strains and stresses

in an elastic composite are known then the "displacements", "strains'and

"stresses" in the associated elastic composite are also known in terms of

TD moduli. These are then the transforms of the displacements, strains and

stresses in a viscoelastic composite with identical phase geometry.

The theory developed above applies equally for effective creep

compliances. Equ. (4.2.9) may be rederived on the basis of associated

elastic composite theory just as (4.2.5) has been rederived above. The LT

of (4.2.9) is

¢ij (p) = p S ijkl gkl (p) (4.2.23)

Since by SH (4.2.22) and (4.2.17) must apply for the same transformed average

S,W ^*

stresses and strains we conclude that p C and p S are reciprocal. Thus
ijkl ijkl
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2 AW AW

p Cijrs Srskl =Iijkl i
I

^W

and p S ijkl may be identified as TD effective compliances.

known, Sijkl

time domain.

(4.z .24)

A*

Once C are
ijkl

can be computed from (4.2.24) and can then be inverted into the

Since in applications one is primarily concerned with the case of visco-

elastic matrix and elastic fibers it is of importance to investigate the form of

the correspondence principle for the case of a composite consisting of

viscoelastic and elastic phases. It has been stated before, (4.1.24) , that in

viscoelasticity theory elastic moduli are interpreted as relaxation moduli

in terms of Heaviside unit functions. We can also see this if we take the LT

e_(m)

of (4.1.25a) for an elastic phase with moduli t_ijkl and compare the result

with (4.2.15) . It is seen that

(rn) e_(m)

PUijkl (P)= _ijkl (4.2.25)

from which it follows immediately that

(m) (t) e (m)
Cijkl = _5ijkl H(t)

which is the same as (4.1.24). More important, (4.2.25) shows that the TD

moduli of an elastic phase are just the elastic moduli. This shows that the

correspondence principle as stated above remains unchanged in the case of the

presence of viscoelastic and elastic phases. It may be emphasized that in this

case the moduli of the elastic phases are left unchanged in the replacement

scheme which leads to the effective TD moduli.
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The transform inversion in (4.2.22) is frequently very difficult to carry

out. But it is fortunately possible to obtain information about the behavior of

C ijkl(t) at t = 0 and at t -* _ without performing a transform inversion. This is

done by the use of initial and final val _e theorems (Abel-Taaber Theorems) for

Laplace transforms.

,%

Suppose that q)(p) is the LT of a function <0(t) . Then

A

lira p %0(p) = %0(o) (a)

p-.co

A

lim Pm (P) = _o (_) (b)

p-_ o

(4.2.26)

provided that the limits exist. For proof see e.g. [4.10]. The first of (4.2.26)

is the initial value theorem and the second is the final value theorem.

Now from (4.2.18), (4.2,21)and (4.2.26)

* ^ * e * [l_(mlp
Cijkl(O) = lira p Cijkl(P) = lim Cijkl -- )' {g] ] (a)

p .__ co p .__ co

^* e * [r.(m)• (co) = lira p C (p) = lira C (p),[g} ] (b)
C ij kl ij kl ij kl -

(4.2.27)

p-. o p-* o

From (4.2.16) and (4.2.26)

lira i"(m) = lira p _(m)
ij kl ij kl (p)

_ (m)
= uijkl (o) (a)

p_ p_

^ (m)
F (m) = lira p C (p)

lira ijkl ijkl
(m) co)

= G ijkl( (13)

(4.2.28)

p-_o p-. o
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Insertion of (4.2.28) into (4.2.27) yields

* e *
Gijkl (o) = Cijkl [G__(m)(o),[g] ]

* e_* [C (m)C (-) = u _ (o.) , [g]. ]
ijkl ijkl

(a)

(b)

(4.2.29)

* (m) (o) initial effective and phase relaxation moduli,
We shall call C ijkl(O) and C ijkl

* _ (m) (_) final effective
respectively. Similarly, we shall call C ijkl(_) and t;ijkl

and phase relaxation moduli, respectively. The theorem which we have proved is:

The initial (fina_ effective relaxation moduli of a viscoelastic composite are

obtained by replacement of phase elastic moduli by initial (final) phase relaxation

moduli in the expressions for the effective elastic moduli of a composite with

identical phase geometry. This theorem will be called the initial (final) value

c orre sp ond e nce principle.

The theorem which has been proved is of considerable practical importance

as will be seen in applications further below. It provides the possibility to

compute the initial (elastic) and final (after long time) values of ERM. In some

cases these values are quite close and this then indicates that the viscoelastic

effect is not of importance, if it is assumed that ERM and EGG vary monotonically

with time.

Initial and final effective creep compliances are most easily obtained

in the following manner. From (4.2.24) and (4.2.26)

p2 ^* ^* ^* ^*
Ctjrs(P) Sskl( _ = lim [p C ijrs] lim [p Srskl] =

lira

p-. _ p-_

= Cijrs (o) Srskl (o) = Iijkl
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with a similar result for p -* 0 .

C ijrs (o) S rskl (o) = Iij kl

*

Cijrs (_) Srskl (_) = Iijkl

Summarizing, the results are

In words: The initial (final) ERM and EGG are reciprocal.

Evidently the same proof also applies to phase moduli.

(m) (o)S (m) (o)
C ijrs rskl = Iijkl

C (m) _ (m)
iirs =brskl Iijki

(4.2.30)

Thus

(4.2.31)

Consequently, initial and final EGG are computed from initial and final ERM

just as in elasticity. Also, phase final (initial) creep compliances may be

used instead of phase initial (final) relaxation moduli in the initial (final)

value correspondence principle, if convenient.

We note that the correspondence principle for viscoelastic composites

applies only to expressions for effective properties. No conclusion can be

drawn at the present time for relations between bounds for EEM and bounds

for ERM. It is possible by means of the elasticity-viscoelasticity analogy

to derive bounds on TD rnoduli just as in elasticity, but it is not known what

these bounds imply for the inverse transforms in the time domain.

Schapery [4.11] has discussed some relations between transform bounds and

inverse transform bounds on the basis of approximate transform inversion, but the

magnitude of error introduced by his approximation does not seem to be known.
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4.3 VISCOELASTICBEHAVIOROFFIBERREINFORCEDMATERIALS(*)

4.3.1 Effective Transform Domain (TD) Moduli

We now proceed to exploit the correspondence principle for viscoelastic

composites and the results for EEM of FRM, given in part 3, to derive ERM and

ECC of FRM. It is recalled that the correspondence principle applies to elastic

and viscoelastic composites of same phase geometry and that the principle can

be used only if explicit expressions for EEM are known. Fortunately, we have

expressions for EEM of transversely isotropic FRM described by the composite

cylinder assemblage model. Therefore we can use the correspondence principle

to study the viscoelastic behavior of viscoelastic composite cylinder assem-

blages. It has been seen that the EEM computed for this model agree quite

well with experimental results. It would seem, therefore, that similar good agree-

ment can be expected in the viscoelastic case.

The analysis to be given is based on the following assumptions:

(a) The fibers are perfectly elastic, isotropic or transversely isotropic.

(b) The matrix is viscoelastic, isotropic.

(c) The viscoelasticity of the matrix can be neglected in dilatation.

These assumptions imply that fiber (phase 2) stress-strain relations

are (3.4.88) or (3.4.86-87) and the matrix (phase i) stress-strain relation

is a simplification of (4.1.19), given by

W

The theory presented in chapter 4.3 is based on ref. [4.9].
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a(1)(x,t ) = 3K 1 ¢(1)(x_,t)

t

f _ e(i)s(1)(x,t).._ =2 Ol(t-T) -_ iji}

o

t

(i) (x,t)= i i (t-T) _ s
e ij -

o

(x_,T) dT

(i)..(x_,t) dT
i]

(a)

(b) (4.3. l)

(c)

(i)
o(1)(x,t) = 3K 1 ¢ (x_,t) (a)

(4.3.2)

(i)
(x_,t) = Q(D) e(1)(x,t) (b)P (D) s ij ij

Equs. (4.3.1a), (4.3.2a) area consequence of assumption (c) which is a

frequently used approximation.

Note that neither of the assumptions (a-c) is theoretically needed.

The following treatment may be easily extended to transversely isotropic

matrix, viscoelastic fibers and matrix dilatational viscoelasticity.

To apply the correspondence principle we use the expressions for

composite cylinder assemblage EEM which were derived in par. 3.5.3. We

note that since the fibers are elastic their TD moduli are also their elastic

moduli, as has been shown in par. 4.2.2, and they are thus left unchanged

in the replacement scheme.

It is noted that G 1 and I1 are related by (4.1.35b).

If it is desired to use differential operator stress-strain relations

of type (4.1.21-22), then in the present case
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For matrix moduli we have to incorporate the assumption that the

dilatational stress-strain relation is elastic with bulk modulus K i. To do

this we first write the matrix moduli appearing in composite cylinder assem-

blage EEM expressions in terms of K 1 and G I. To avoid confusion with

relaxation moduli we assign to elastic matrix moduli a left superscript e,

except for K 1 where this is not needed. We recall the well known relation

for isotropic elasticity

2

K= k+-_-G

We then have from (3.4.89)

4 (a)
e_l = K 1 + -_- eG 1

e 2 e (b) (4.3.3)
kl = K1 3 G1

ekl 1 e (c)=KI+- _- G 1

The Young's modulus eE 1 and the Poisson's ratio

known expressions

e

v1 are given by the well

eE - 9KIeGI (a)

1 3KI+eG1

e 3K1-2eG1
= (b)

Vl e

2 (3KI+G 1 )

(4.3.4)
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Now the TD moduli replacing (4.3.3-4) in EEM expression are simply obtained

by replacement of eG 1 by f"1(p),everywhere. Therefore the replacement rule is

eG - I"1(p) = PGI(P) (a)1

enl -" P_I (p) = K1 + 4 F (p) (b)3 1

ekl -' P_I (p) = K1 32 Fl (p) (c)

(4.3.5)

ekl ^ 1-_ Pkl (p) = KI + _- rl (p) (d)

9Kl r 1(p)

eE1 -_PF.I(p)= 3KI+I_1(p) (e)

3K1-zr 1(p)e

Vl -" vl(P) = 213KI+F l(p)] (f)

Here (4.3.5a) is to be interpreted as (4.1.42) for stress-strain relations of

type (4.3.2), which also define (4.3.5b-f) for this case.

Use of the replacement scheme (4.3.5) in the expressions (3.5.91-92),

(3.5.96-97), (3.5.99) and (3.5.111) yields the corresponding TD effective moduli.

The case of the transverse effective shear modulus G is unfortunately more
T

complicated. It will be recalled that bounds, (3.5.113-114), for this EEM
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were given, but it is not known at the present time how these bounds can be

generalized to the present viscoelastic case. As has been stated before

recent work by Hashin and Rosen indicates that (3.5.1 13) may be the actual

result for G T of a composite cylinder assemblage if the fibers are stiffer

than the matrix. It has also been seen that (3.5.113) is in good agreement

with experimental results. We consequently regard (3.5. 113) as an ad-hoc

expression for G
T

of the composite cylinder assemblage and also transform

it into effective TD modulus form as the other moduli.

The resulting TD effective moduli are now summarized.

^ k2)2. (pk - v 1 v 2

pn (p) = pA 1 v l+n 2 v 2- tA A

Pk I v2+k 2 Vl+PG 1

A A A a_

Pkl (k2+PG1) Vl+k2 (Pkl + PG1) v2

(kz+PG1) Vl + (Pkl +pG1 ) v2

A*

pk (p)=
P_:I (k2+PGI) Vl +k2(p_:l +pGI) v2

A m,

(k2+PO 1) v 1 + (pk 1 + PG1)Vz

^*

pE
A

(p) = pE 1 v 1 + E 2 v 2 +

4[v 2 - _l(p)]Zvl v2

Vl/k2 +v2/P[1 +l/pG 1

(a)

(b)

(c)

(d) (4.3.6)
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'_:(P)= _i(p)v l + _Z vz +

_ _l(p)](i/p_l-I/kZ)vl vz

" + I/P6 1
Vl/k 2 + vz/pk I

(e)

p6 Iv +c z (l+v2)

PGA(p)= pG 1 p_ l(l+v2)+O 2 vI

(f)

A* ^

pG T(p)= pG i

1
[i+_(p)vz3][_(p)+ _l(p)vz ] - 3vz v

Z _12(p)
[_+o.(p)v_] [p(P)-vz] - 3vz vl

(4.3,7)

where in (4.3.7)

(a)

(P)+ _l(p)

p (p)= (p)- l

(b)

G Z

pG l(p)

(c)

1
(d)

l

_Z = 3 -4v-------_

(e)
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A*

The TD modulus pE T
and the TD Poisson's ratio v

T

for elastic composites. Thus from (3.4.8?.-84)

(p) are defined just as

^*

pET (p) =

"_T (p) =

m(p) = 1 +

4pk pG T

,_* ^9:

pk + m(p)O
T

^* A*

pk - m(p)PGT

,_* ^*

pk + m(p)pG
T

2
^* *

4pk vA (p)

^*

PE A

(a)

(b) (4.3.8)

(c)

A few comments on equs. (4.3.6-8) are in order. Firstly, it will be

noticed that in many equations p factors have not been cancelled. The reason

for this is that because of the presence of K 1 there is no common p factor in

the right sides of (4.3.5) except for (4.3.5a) and so cancellation of p factors

would provide no advantage.

Secondly, the occurrence of TD Poisson's ratios (4.3.6d) and (4.3.8b)

calls for some explanation. These "Poisson's ratios" are only of formal

significance in relating TD moduli (for example (4.3.7a,c)). The inverse

transforms of these "Poisson's ratios" have no intrinsic physical meaning.

In order to obtain an effective strain-stress law we write first the TD

analogue of (3.4.78) which is given by
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^ i " VA (p) ^ _A (p)
¢ii ^* all .* 022 ^* 033

PE A PE A PE A

(a)

_ _ ± v (p) ^

" _ _A (p) ^ 1 a2 T -e22 ^* °ii + ^* 2 ^* 033

PE A pE T pE T

(b) (4.3.9)

__ VA(p) ^ v (p) ^
e - - T - 1 -_
33 "* all -.* a22 + -- ,,* a33

PE A PE T PE T

(c)

For the shears we merely invert (4.2.19d,e,f) to read

12

A

(7

12
^*

2pG A

(a)

e23 -

a23

^*

2pG
T

(b) (4.3.10)

_13

13 ,,*
2pG

A

Inversion of (4.3.8-9) yields strain-stress relations of type (4.2.9) and thus

the effective creep compliances.
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Often relaxation moduli reduce to a small fraction of their initial values

after long time, (theoretically infinite) , has elapsed. This has important bearing

on the calculation of final values of ERM. It is recalled that according to the

initial and final value correspondence principle initial and final value ERM

are found by substitution of initial and final value phase relaxation moduli,

respectively, into EEM expressions. The initial values of the relaxation moduli

are written simply as the left sides of (4.3.3-4) with zero time argument. The

final values of the relaxation counterparts of (4.3.3-4) are found by substitution

of Gl(O_) into these expressions while K 1 is left unchanged, since it is by

hypothesis time invariant. Now GI( ::) may often be neglected in comparison

to K1 . In this case we have from (4.3.3-4)

ni ( _ ) = li (_) = kl (=) = Ki (a)

El(:)= 3Gl(_) 0_) (4.3.11)

l (c)
"_i (00)= -2

It is, of course, not necessary to neglect G 1 (::) with respect to K I.

If GI(::) can be estimated from experiment its value can be easily used.
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4.3.2 Effective Relaxation Moduli and Creep Compliances

4.3.2.1 Methods of investiqation

The ERM and ECC of the viscoelastic FRM may now be obtained by

transform inversion of (4.3.6-7), but examination of the expressions to be

inverted reveals that this is a formidable undertaking. An extensive investiga-

tion of the resulting viscoelastic properties is not within the scope of the

present work. We shall limit ourselves to study of some typical cases and

some conclusions of general interest.

The methods of investigation at our disposal are:

Representation of matrix shear relaxation modulus G 1(t) by an arbitrary
(a)

function which is determined by experiment.

In this case the inversion must be performed numerically by either one

of the following methods: numerical solution of an integral equation or

approximate numerical transform inversion.

(b) Representation of the matrix shear stress-strain relation by differential

operators of type (4.3.2b).

In this case pOl(p) is given by the expression (4.1.42b) which is a

ratio of two polynomials in p. All of (4.3.6-7) then also become ratios of

polynomials in p and the inversion can be performed by conventional methods.

The necessary calculations may, however, become extremely laborious.
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(c) Simplification of fiber and matrix properties in order to obtain easier

transform inversions,

Great simplification is achieved if it is assumed that fibers are rigid or

(and) that the matrix is incompressible. Expressions for composite cylinder

assemblage EEM for such extreme cases have been given in par. 3.5,3 and

the correspondence principle can be applied directly to these expressions.

The simplification is primarily due to disappearance of matrix Poisson's ratio

whose TD counterpart (4.3.58), is largely responsible for transform complexity.

It should, however, be realized that the rigid fiber arid/or incompressible

matrix approximation may introduce significant errors. Consequently,

viscoelastic results obtained on the basis of these approximations should

be regarded as qualitative.

(d) Use of the initial and final value correspondence principles, of par. 4.2.2

to obtain initial and final values of ERM and ECC.

This method is of significant practical importance since it uncovers those

cases where the viscoelastic effect is unimportant. If the final value of an

ERM is close to its initial value and ff the ERM is a monotonic function of time,

then this implies insignificant time effect. It is not, however, known to the

author how monotOnicitF can be demonstrated without finding the ERM for the

whole time range. It seems physically reasonable to assume that this is the

case if matrix relaxation moduli are monotonic functions of time, which is a

well established physical fact. So the monotonic time character of ERM is at

present reqarded as a conjecture,
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4.3.2.2 Axial and isotropic-plane stressinq and straining

Suppose that a fiber reinforced cylinder is subjected to average strains

[_ .(t) ]
tj

eiI(t) o

0 eT (t) 0

o]

0 0 eT (t)

(4.3. _2)

by means of the homogeneous boundary conditions

Ul(S,t) = ell(t) x 1 uz(S,t) = e T (t) x 2 u3(S,t) = eT(t) x 3

(4.3.13)

In that event the TD stress-strain taw (4.2.19) becomes

all(P) = p_ (p) ell(P) + 2p_*(p) eT(p)

h A ^ ^. ^. ^

G22 = _33 = _ (p) = p4 (p) + 2pk (p)e (p)T T

(4.3.14)

The inversion of (4.3.14) into the time domain is

Oil(t ) = n ®d_ll +Z_ ® d$ T

OT(t) = Z ® d_ll +2k ® d7 T

We wish to study the ERM n (t) , _ (t) and k (t)

(4.3.15)

entering into (4.3.15).



435

We start with application of the initial and final value correspondence

principle. The initial moduli are then given by replacement of elastic matrix

moduli in (3.5.99), (3.5.91) and (3.5.92) by the corresponding initial values

of the phase relaxation moduli. Therefore

(o) -

Lhi (o)- _2 j2v iv2

(o) = _I(O) v I +n 2 v2 - kl(o)v2+k2Vl+Gl(O)

_'i (o) _z +GI (o) ]v1+X 2 [k ! (o)+Gz (o) Iv 2

[k2 +G 1(o)]vl -I" [ k i (o)-I-G 1(o)]v 2

. k i (°) [ k2 +G i (°) ]Vl+k2 [kl (°) +GI (°) ]v2
k (o)=

[k_+G_. i (o)]v i + [ kl (°) +G i (°) ]v2

(a)

(b) (4.3." _'zoj

(c)

where because of tsotropy [compare (3.4.89)]

_l (o) = x I (o) + 2Gz (o) = k I (o) + GI (o)

n2 = )'2 + 2G2 = k2 + G2

The final values of n (t), _ (t), k (t) are found by substitution of

(4.3.11) into (3.5.99), (3.5.91-92). This yields
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n (=) = K 1 v I +n 2 v 2 -

Kl(k2v I + k2v2 )

k2v I + KIV 2

, K 1 k2
k (_):

k2v I + KlV 2

IKI- ½)2VlV2

K 1 v 2 + k2 v I
(a)

(b) (4.3.17)

(c)

Note that G 1 (o_) has been neglected with respect to fiber moduli.

We perform a sample calculation for a FRM consisting of epoxy matrix

and glass fibers. The elastic moduli of the epoxy are taken as the initial values

of the epoxy relaxation moduli.

given in table 3.6.1, p.223

The epoxy and glass elastic properties are

* *

The results for _ (o) and n (_) are given for

various fiber volume fractions in the table below.

v2 n (o) _ (=) (i06 psi)

0 0.64 i 0.44

0.2

0.4

0.6

0.8

1.0

2.66 2 •54

4.69 4.63

6.71 6°74

8.88 8.91

11.68 11.68
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It is seen that the results are so close that the time dependence of n

be safely ignored for this kind of FRM.

9: * *

Results for _ (o), _ (_) and k

(t)can

(o),k (_) are shown in figs. 4.3. i-2.

It is seen that the time dependence of _ (t)and k (t)is not very significant.

It should be borne in mind that to study this time dependence it is necessary

to resort to methods (a) or (b) described In sub-par. 4.3.2. i. Since the

mathematics involved is laborious and complicated this hardly seems to be a

worthwhile undertaking in view of the small difference between initial and

final values shown in the figures.

If the fibers are assumed rigid itis possible to establish a very simple

expression for k (t)which expresses this ERM explicitly in terms of arbitrary

e *

matrix properties. For rigid fibers k is given by (3.5. 115). The corres-

ponding TD modulus is found by replacement of kl, G 1 by (4.3.5a,d). We find

^ v 2
,, * 1 ,. 4 (p) _ (4.3.18)

pk (p) = K 1 + --_ PGt(P) + EK 1 + "_ p G 1 l_v2

Division of both sides by p and subsequent inversion yields

, K 1 1-3v 2

k (t)- l_v2 + 3(i_v2 ) Gl(t) t>_ 0 (4.3.19)

It is easily realized that (4.3.19) can be generalized to the case of a matrix

which is viscoelastic in shear and dilatation. In that event (4.3.19) becomes
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, K 1l-v2(t) 1+3v2, , l
k it) = + 3(1_v2 _ Gl(t) (4.3.20)

.............................................................................. i

Expressions (4.3.19-20) permit the direct use of experimentally obtained matrix

viscoelastic properties. Such expressions are a happy and unusual occurrence

in viscoelastic composite theory. It is, however, emphasized again that the

underlying rigid fiber approximation has to be viewed with caution. A possible

way of checking the validity of (4.3.19) fora FRM with stiff fibers is to

compute from it k (o) and k (_) and to compare these with k Co), k (_)

results obtained by the previously used method for non-rigid elastic fibers.

If the results are close it may be assumed that (4.3.19) can be used. We

have for rigid fibers

• v 2

(o)= k1(o)+ [kl(O)+ Gl(O)] i_v2 (a)

, K 1
k(_)-

I-v 2

(b)

(4.3.2 I)

where (4.3.21) follows from (3.5. 115) and (4.3.21b) follows from (4.3.18) by

neglect of GI(_ ) with respect to K I. A numerical comparison of the values

of k (o) and k (_) based on (4.3.16c) , (4.3.17c) for epoxy matrix and glass

fibers and based on (4.3.2 i) for epoxy matrix is given in the table below

rigid fibers elastic E-glass fibers

v2 _ (o) k (_) k (o) k (_) (10

0 0.49 0.44 0.49 0.44

0.2 0.65 0.56 0.64 0.55

0.4 0.92 0.74 0.87 0.70

0.6 1.46 l.ll 1.26 1.02

0.8 3.51 2.22 2.21 1.78

6
psi)
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It is seen that for the present material for which k2/k I (o) = 14.8 the values

in the range 0 -< v2 _ 0.6 are reasonably close and therefore the use of

(4.3.18) for the whole time range seems justified.

We now proceed to study EGG and for this purpose we consider

average stresses of the form

_ll(t) _ 0 i ]

0 OT(t) t >- 0 (4.3.2Z)

0 0 _T(t)

which are imposed by means of the homogeneous traction system

TI(S,t ) = Oll(t) n I Tz(S,t) = OT(t) n2 T3(S,t) = OT(t) n3

The TD strain-stress relations (4.3.9) now assume the form

_- 1 '-" pv A(p) __
ell * _ii ^* _T

PE A PE A

_., __ A _A (p) -_ i-_ T (p) _A

¢22 = e33 = eT _* (;ii + ^* °T

PE A PE T

(a)

(b)

(4.3.93)

Since TD moduli are related just as elastic moduli we recognize from (3.4.85b),

(3.4.82 -84) that
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l-Vr(P) 1 2IrA(p)]2
-- +

_.* A* ^*

pE T 2 pk pE A

(4.3.24)

We now introduce the notation

,,* i

P e A ^.

PE A

(a)

A. i
P _ - (b)

pk

v (p)
^* A

p S - ^. (C)

PE A

(4.3.25)

. 2

^. ['_A(P) ]
p r = (d)

^*

PE A

Insertion of (4.3.24-25) into (4.3 .?3) and inversion yields

_ll(t) = e A OdOll +2 s o d_ T (a)

T(t) * !__* * -= s OdUll + ( 2 + 2r ) o do T (b)

(4.3.26)

The functions eA(t) , s (t), k (t) and r (t) are effective creep compliances.
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If _T is zero then the specimen is in a state of uniaxial average stress.

We then have from (4.3.23a) and (4.3.26a), respectively

t n

_ f . d (T)

Ol I(t)= ]EA(t-T ) ¢lldT dT (a)

O

t aS11

=f,¢1 1 (t) e A (t-T) dT rt'r (b)

0

(4.3.27)

Equ. (4.3.27a) determines the unlaxial stress variation (relaxation)

ifan axial strain history is given and (4.3.27b) determines the axial strain

variation (creep) for uniaxlal stress history.

m

If eII (t)vanishes then the specimen is in a state of plane strain.

In this event itfollows from (4.3.23), (4.3.24) , (4.3.25b) and (4.3".26b) that

deT (T)qT (t)= 2 k* (t-T) dT d7 (a)

O

t d_ (T)

_T(t) I /_* T dT (b): T (t-T) dT

O

(4.3.28)

The physical interpretation of (4.3.28) is similar to that of (4.3.27).

Equ. (4.3.28a) determines average stress relaxation for given average strain

history, while (4.3.28b) determines average strain (creep) for given average

stress history.
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The creep compliances s (t)and r (t)appearing in (4.3.26) determine

the coupling effects on deformation when (_ii and aT act simultaneously.

They are of the nature of time dependent Poisson's ratios.

9:

We proceed to study the behavior of the ERM EA(t), which is of great

practical importance. We have from (3.5.96) and from the initial and final

value correspondence principles with (4.3.11) used in the latter,

[.......................................................................

! 4 [v 2 V 1 (o) ]2
[ * - v 1 v 2

EA(O) = EI(O)V +EzV z +
i I vl/kZ+vz/k1%1/G i(o)

(a)

E A (_o)= E2 v2 (b)

(4.3 .Z9)

The simple form of (4.3.29b) is obtained because GI(_) is neglected with

respect to fiber moduli.

Plots of (4.3.29) for glass and epoxy properties, previously used,

are shown in fig. 4.3.3. The third term in (4.3.27a) is numerically

insignificant and so P.A(o) is practically given by the first two terms. This

phenomenon has been repeatedly noted in discussion of elastic E A. It is

seen that only for small fiber volume fraction is there an appreciable difference

between E (o) and E (_). For the fiber volume fractions used in practice which

are generally higher than 0.4, the difference is negligible.

dependence of EA(t) can be neglected for such materials.

Thus the time
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The vanishing of EA(_) for no fibers should not be taken too literally.

Since in this case EA(_) is El(==) , this merely implies that El(==) is regarded

as a small number.

It is recalled that it has been shown previously that E is an excellent

e *

approximation for E A , i.e. the effective axial Young's modulus for any

fibrous or fiber reinforced material. It is reasonable to expect that therefore

A*

the TD modulus pE A can be represented with excellent approximation by

the average of the phase TD moduli, thus

PEA= PEl vl + E2 v2

from which by inversion

EA(t) = El(t) v I + E2 H(t)

The initial and final values of the compliances e

easily found. We have from (4.3.25a,b) and (4.9..26)

(4.3.30)

A(t) and k (t)are also

* _,* 1 i

eA(o) = _im PeA(P) = Zim [--^. ] =-. (a)

p _ = p 4= pEA (p) E A (o)

* ^* 1 ] = 1
eA(:_) = _im PeA(P) = Zim [ ^, --%-----

PEA(P) EA(=)

(4.3.31)
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and similarly

* 1
(o) : --m" (a)

k (o)

* 1
k (_) - (b)

k (_)

(4.3.32)

The results (4.3.3 1-32) are really examples of the general relations

(4.2.30) and can be directly derived from the latter.

It follows from (4.3.29) , (4.3.16c), (4.3.17c) and (4.3.31-32) that

.... * .......L ........... i .............................................

eA(o) El(O) v 2 +E 2 Vl

* 1

eA(_ ) - E2 v2

(o)=
[k2+Gl(O)] v I + [kl(O ) $ Gl(O)] v 2

k1(o)[kz+G l(o)]v{k2[k i (o)--m;l (o)] v2

, v I v2
_(_)- + --

K 1 k2

(a)

(4.3.33)

(b)

(a)

(4.3.34)

(b)

where the third term in the right side of (4.3.29a) has been neglected.

Plots of (4.3.33-34) for Epoxy-glass FRM are shown in figs. 4.3.4-5.

It is seen that for sufficiently large fiber volume fractions, as used in practice.
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eA(o) and eA(_) are very close together, indicating again the insignificance

of the viscoelastic effect for a uniaxial stress in fiber direction. There is a

significant difference at low fiber volume fractions. Indeed eA(_) for the

matrix without fibers becomes theoretically unbounded. This, of course,

merely implies that EI(_) is small.

The values of h: (o) and N (_) are also not significantly different.

Evaluation of ;_ (t) for the whole time range is of course as laborious as

evaluation of k (t) and must again be done by numerical methods or on the

basis of assumed differential operator stress-strain relations for the matrix.

It is to be noted that there is no such simple result as (4.3.19) for

the creep compliance ,% (t) , when the fibers are assumed rigid. To see this

we use (4.3.25b) and (4.3.18) to obtain

^* i+3v2 _* 1
K1 k (p) + G1 (p)_ (p) = Z

] - vz p 3(l-vz) p

The inversion of this equation into the time domain is

t t

Kl f* 1+3v2 / .
1 - v 2 J¢ (T) dT+ 3(i_v2 ) Gl(t-_ ) k

O O

(T) dT= t (4.3.35)

Here G
1 (t) is a numerically known function and k (t) is the unknown function.

Another form of the equation may be obtained by differentiation of (4.3.35) with re-

spect to t. We then have

K1 . l+3v 2 t %GI (t_T) ,

-- / ;[ (T) dT = 1[ l-v 2 + GI(O) ] 7_ (t) + 3(i-v2) _T

O
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Such integral equations can be solved numerically by methods described in 14. 153.

We now consider the ECC s (t)which enters into (4.3.26). It follows

from (4.3.25c) and the theorems (4.2.26) that

v (o)
A

s (0)- , (a)

EA(O)

* A
s (co)- * (b)

EA(=)

(4.3.36)

The denominators of (4.3.36) are given by (4.3.29). The numerators are

obtained from (3.5.97) with the replacement (4.3.11) for'0A(_). We then have

. [v2-v 1 (o) Y 1/k 1 (o) - 1/k 2 ] v 1 v2
v A(o)=_(o)v +v 2 v2 +

1 Vl/k 2 +v2/kl(O ) + i/Ol(O )

* 1

VA(_ ) = _-v 1 +'a 2 v 2

Plots of s (o) and s

(a)

(4.3.37)

(b)

(co)are shown in fig. 4.3.6. It is seen that for fiber

volume fractions larger than 0.3 the difference between the two is insignificant.

We observe that s (_)- s (o) is positive for fiber volume fractions between 0 to

about 0.55 and then becomes negative. The same curious phenomenon was

also found for Z (t), fig. 4.3.1.

Treatment of r (t) is, of course, completely analogous and it is again

found that for the present material the viscoelastic effect is insignificant.
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4.3.2.3 Axial and transverse shearinq

We shall now discuss the viscoelastic properties of FRM in axial or

transverse shear. It will be seen that in contrast to the viscoelastic properties

discussed in sub-par. 4.3.2.2 there is a significant viscoelastic effect for

both of these shears.

shear

Suppose that a fiber reinforced cylinder is subjected to average axial

0 _iZ (t)

E_ij (t) ]= 12(t) 0 (4.3.38)

0 uJ t_ O

by means of the homogeneous boundary conditions

Ul(S,t) = _12(t) x2 uz(S,t) = _12(t) x I u3(S,t) = 0

It follows from (4.2.13d) that the only surviving average stress is _12 which

is given by

t d- (T)

- f * ¢12 dTo12 (t) = 2 G A (t-T) d m
J

O

(4.3.39)

where G
A

is the effective axial shear modulus, whose transform is defined by

(4.3.6f).

Dually, the specimen is subjected to the average stress
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_ (t)J=L ..

i]
o _lz(t) o ]

:_1 (t) o o

: o o
t_> 0

by means of the homogeneous traction boundary conditions

TI(S,t ) = Ol2(t) n 2 T2(S,t) = 012 (t) n I T3(S,t) = 0

To find the strain response we consider (4.3.10a).

gA(p) by

We define the quantity

._* i

pg A (p) : ,,.

P GA(P)

(4.3.40)

Insertion of (4.3.40) into (4.3.10a) and inversion yields

d_iz(t )
- i *

¢12(t) = 2- gA (t-T) d_

o

dq" (4.3.41)

Thus g
A

is recognized as the effective axial shear compliance.

Obviously, similar results for transverse shearing can be written down

at once. For average transverse shear strain
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0 0

0 0

0 ¢23

0

¢23

(t) o t

the stress response is

t d_23 (T)

- f._23 (t) = 2 G T (t-T) dT

O

dT (4.3.42)

where the LT of the effective transverse shear relaxation modulus G
T

is

defined by (4.3 °6g),

For average transverse shear stress

o o or0 0 523 (t)

0 7;23 (t) 0 t_> 0

the strain response is

- 1 /" * do12 (T)

e23 (t)= 2- J gT (t-T) dT dT

O

where the LT of the effective transverse shear creep compliance g
T

(4.3.43)

(t) is defined by

* 1
Pg (P)- .

T ^
pG T (p)

(4.3.44)
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We start the investigation of shear properties with application of the

initial and final value correspondence principle. The elastic axial shear

e * * *

modulus G A is given by (3.5.111). The form of GA(O) is immediate and G A

is obtained by replacement of G 1 by GI(_) in (3.5.111). We then neglect

G I(_) in comparison to G 2. The results are then

, Ol(O) Vl + G2(l+v 2)
= (a)

GA(O) GI(O) G 1 (o)(l+v2)+G2Vl

, l+v 2

GA(:: ) = G l (_)
V

i

(b)

(4.3.45)

It is seen by the form of (4.3.45) that G A (m) is of the order of Gl(m). Therefore

the reduction of GA(t) in the time range (o, _ ) is considerably larger than even

that of Gl(t) . This implies that the viscoelastic effect is significant and the

initial and final values do not give good estimates.

The initial and final values of the creep compliance gA(t) , entering

into (4.3.42) are simply found by use of theorem (4.9.36) in the relation (4.3.40).

It follows that

...................

* ,, i

: g A [O) -

G A (o)

(4.3.46)

* 1

gA(=) - ,

G A (_)
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and thus (4.3.45-46) define the initial and final values ofgA(t). It ks seen

* W

that gA (=) is very large since GA(=) is very small. This again indicates the

significance of the viscoelastic effect.

* e *
The procedure for G (t) is entirely analogous. The elastic G is

T T
*

assumed to be given by (3.5.113). The initial value G (o) is given by
T

replacement of G 1 and vI by Gl(O) and _i(o), respectively. The final value

* 1

GT(_°) [s given by replacement of G 1 by GI(_) and of '_I by _-, (4.3.11).

If Gl(°_) is also neglected with respect toG? we have

1 -v2 +Sv 2 + v2 3

GT(°J = Gl(C°) (l-v2) 3 (4.3.47)

It is again seen that G
T (oJ is of the order of GI(=) which indicates significant

viscoelastic effect in transverse shear. Comparison of (4.3.47) with (3.5.119)

reveals identical forms. This is not surprising since as has been mentioned

1

(4.3.47) is based on final Poisson's ratio _- and negligible GI(_ ) with respect

to G 2, which is equivalent to incompressible matrix - rigid fiber situation.

Again, it follows from (4.2.36) and (4.3.44) that

(o)-
gT

G T (o)

(4.3.48)

* 1

gT(=) - .

GT(=)

and g T (_) becomes very large since G T(_) is very small.
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Having satisfied ourselves that the initial and final value correspondence

principle does not provide useful information for GA(t ) and GT(t), we are forced

to look for other methods of investigation. We start with derivation of some

very simple and general results for CA(t) when the fibers are rigid, and for G T
(t)

when the [ibers are rigid and the matrix is incompressible.

Suppose that the material is fibrous or fiber reinforced, with arbitrary

phase geometry. It has been shown in par. 3.5.1 that the elastic axial shear solution

depends only on the phase elastic moduli e e
G 1 and G 2. Consequently, we can

write the general expression

* : e * e _g} ) (4.3.49)eG A G A (eG 1 , G Z ,,

where [g] stands for phase geometry. By dimensional argument (4.3.49) can

be written in the form

e

e * : e G2

G A G 1 F (-7--- , [g] ) (4.3.50)

G 1

where F is some function.

e /eG 1 becomes infinitely large.Now let phase 2 be rigid and so G 2

It is assumed, however, that eG A remains finite. Such a situation will

arise when the rigid phase is in the form of fibers, 2 , which are surrounded

by matrix, 1 . Then (4.3.50) can be rewritten

* =e G
eGA 1 FA (4.3.51)

where FA is a function of the phase geometry only.
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We now apply the correspondence principle to (4.3.51). This implies

* e _*

that eG A and G 1 are replaced by pG A and pG 1 in (4.3.51). This procedure

yields

G A (p) : Gl(P) FA (4.3.52)

which immediately inverts into

GA(t) : Gl(t) FA
(4.3.53)

In view of (4.3.51) we can also write (4.3.53) in the form

* e *

GA(t) G A

G i (t) eG I

(4.3.54)

Expressions (4.3.53-54) are very interesting results. They show that

the ratio between the effective axial shear relaxation modulus and the matrix

shear relaxation modulus remainsconstant for all times and is given by the

ratio between effective axial elastic shear modulus and elastic matrix shear

modulus.

Inserting (4.3.52) into (4.3.41) and using the relation (4.1.35) for the

matrix material, we find after inversion

gA(t) = I1 (t)/F A (4.3.55)

where J1 (t) is the shear creep compliance of the matrix.
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We now apply the general results obtained to the composite cylinder

e

assemblage model. Equ. (3.5.115c) gives G A for rigid fibers. Using this

result in (4.3.53) we have

. 1 +v 2

GA(t) = Gl(t) 1 - v 2 (4.3.56)

This equation makes it possible to find GA(t) when G (t) is known only as a
1

numerical experimental result. Similarly, (4.3.54) for the composite cylinder

assemblage yields the simple result

, 1 - v 2

gA (t)= If(t) i +v 2 (4.3.57)

Similar considerations can be applied for establishment of an expression

W

for G (t) when one phase is rigid and the other is viscoelastic. But here it is
T

necessary to make the additional assumption that the viscoelastic phase is

incompressible, since
e

G depends on all phase elastic properties. We can
T

then derive a relation similar to (4.3.51)

e * e

G T : G 1 FT (4.3.58)

where FT is a function of phase geometry only. It follows by the same arguments

used before that
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* e *

G T (t) G T

G 1 (t) eG
1

* e

gT (t) G 1

Ii(t) e *
G T

(a)

(b)

(4.3.59)

The right sides of (4.3.59) are given by (3.5.119) . Consequently

, 1-v 2 + 5v23 + v23
G (t) = G (t) (a)

T 1 (1_v2)3

(4.3.60)

, (i-v2)3

g T (t) = I 1 (t) 22 3 (b)l-v 2 + 5v + v2

It should be remembered that (4.3.60) has to be regarded with much more

caution than (4.3.5 6-5 7), because of the incompressible matrix assumption

involved in the former.

We continue the investigation of viscoelastic shear properties with

the derivation of expressions for GA(t) and gA(t) when the matrix behavior is

expressed by a differential operator stress-strain relation. We choose the

simple Maxwell relation (4.3.10a). The associated TD shear modulus is

given by
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,, _]1 p

gl(p) = PGI(P) - I+T1 p (4.3.61)

where

=i = _ I/G!

and _1 and G 1

respectively.

are the viscosity coefficient and shear modulus of the matrix,

Insertion of this TD modulus into (4.3.6f) yields the result

•, rlI _7(l+v 2) + Tl[V 1 + _ (l+v 2) ] P

GA(p) = I+TI p- . ._vI +Tl(l+v 2 + 7v I) P
(4.3.69)

where

= Gz/G 1

The LT (4.3.62) is easily inverted by the method of partial fractions.

result is

The

GA(t) v I 47v 2 _{v 1

G 1 1 + v 2 exp (-t/T I) + (l+v2)(l+v 2 + 7vl) exp ( l+v2+_/v I

When the fibers are rigid ,{ - co , and (4.3.63) reduces to

t

T 1

(4.3.63)

, l+v 2

GA(t) = G i l_v2 exp (-t/T I) (4.3.64)

It has been previously shown, (4.1.44a), that the relaxation modulus

of the Maxwell material is

Gl(t) = G 1 exp ( -t/T l)
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Comparison of the last result with (4.3.64) verifies the general formula

(4.3.56) for the present case.

The creep compliance gA(t) is also easily computed. It follows

from (4.3.62) and (4.3.41) that

A*

gA(p) -

1 +TlP YVl+ Tl(l+v2+YVl) p

2

I]1 p
Y (l+v 2) + Tl[V I + y (l+v2)] P

(4.3.65)

Again inversion is easily carried out and the result is

. v I 4v2

G 1 gA(t) - l+v2 [H(t) + t/TiJ + 7 (i+v2)2

H(t) -

v (l+v 2) t )4Vl v2 exp ( - • --

(l+vz)2y [_ (l+v 2) +Vl] Y (l+vz)+v I T I

(4.3.66)

where H (t) is the Heaviside step function. For rigid fibers, (4.3.66) reduces to

. 1 - v 2

gA (t) - 1 +v 2 [ H(t)G1 +L111 J (4.3.67)

Comparing this with the shear creep compliance of the Maxwell matrix, (4.1.44b)

it is seen that the general formulat (4.3.57) is verified.

The results obtained here can be used to obtain some idea about the y

value for which the rigid fiber approximation becomes permissible, Fig. 4.3.7
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shows plots of the relaxation modulus (4.3.63) for different values of y , in

the case v 1 = v2 = 0.5. It is seen that for o_,> 25 the rigid fiber approximation

becomesquite accurate. Typical values of y are about 30 for glass-epoxy

FRM and 60-90 for boron-epoxy FRM. It is, therefore, to be expected that

the general results (4.3.54-55), for any geometry, and (4.3.56-57) for the

composite cylinder assemblage model , should be applicable for such

materials.

In order to perform a similar investigation Lo_ transverse shear

properties it is necessary to use the t{ansform (4.3.7) in which _ (p) is to
1

be interpreted as (4.3.5f). It is seen that even lor the simple Maxwell

matrix the inversion is extremely cumbersome, though there is no theoretical

difficulty involved. Such an inversion will not be performed here. It would

seem mole advisable to _eso_t toapp_oximate t_ansfo_m inversion methods.

See e.g. Schapery L4.11 ].

Another method of investigation mentioned in sub-par. 4.3.2.1 is that of

integral equation% (method (a)). As an example we derive the integral

equation for the ERM G (t). We rewrite the transform (4.3.6f) in the form.
A

G1 * 1 *+ G 2 v 1 G A = v G(l+ c A p i

Inversion of this expression gives

t

9_

(1 +v 2 1 (t-v) G A

2 1 G1i +GZ(I +vz)

I/G
O

t

/*() d + G Z v I GA

O

() d =
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t t

:vifG i (t-A GI(A ds +G 2 (i +vz)fGi(T)dr

O O

(4.3.68)

Another form is obtained by differentiation of (4.3.68)

t t

(1 +v2)f _--_ Gl(t-r)GA(T)d_ =_f_ _(_-_,

0 0

(r) dr +
1

q¢

+ 2 LG2 - Gl(O) ] GA(t) (4.3.69)

These integral equations must in general be solved numerically and

this can be done for matrix relaxation modulus G 1 (t) which is known only

numerically from experiment.

W

Again, the situation is much more complicated for GT(t ). An integral

equation can in principle be derived from (4.3.6g) but its establishment,

_ct alone its solution, is a very laborious affair. We must again conclude

that approximate transform inversion seems to be the best method indicated

in this case.

4.3.2.4 Transverse stressinq and straininq

Let a fiber reinforced specimen be subjected to the average time

dependent stress system

0 0 0]
[_ij j = 0 _22 (t) 0

0 0 0 t_>0
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by application of the appropriate homogeneous traction boundary conditions.

It then follows from (4.3.9) that

- Z2
a22 * (4.3.70)

pE T

We define the t_ansverse TD compliance pe by
T

* 1
(4,3 71)Pe T , •

pE
T

Insertion of (4.3.71) into (4.3 70) and subsequent inversion yields the

creep relation

t

,22(t) : e T (t-)

O

d_ )
22

d,

d,
(4.3.72)

and it is seen that e
T

(t) is the effective transverse Young's creep compliance.

Next, the specimen is subjected to the average transverse strain _22(t)

and all other aij (t) are kept zero, except for _'22 (t). This is achieved by

the mixed boundary conditions

TI(S) = 0

N

u 2(S) = ¢22(t) x 2 t::O

T3 (S) = 0
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Again (4.3.70) is obtained from (4.3.9) and is now inverted into the

relaxation relation

d_22 (T)_22(t) = E T (t-_) dT dT

O

(4.3.73)

where E T(t) is the effective transverse Young's relaxation modulus.

To obtain results for E and e it is necessary to use (4.3.8) which
T T

*

defines the transform of E T , and by virtue of (4.3.71) also the transform of

*

e T ' in terms of the transforms of other ERM, which are given for the

composite cylinder assemblage by (4.3.6c,d,e) and by (4.3.7). It is seen

that the resulting transforms E T and e T are exceedingly complex expressions.

Because of the appearance of G T in the results, E T and e T vary significantly

with time and so the initial and final vaiue theorems do not yield practical

*

results. Again, it is concluded that the practical method for obtaining E and
T

e variations must be based on numerical transform inversion.
T

If the matrix is nearly incompressible and the fibers are very stiff, (4.3.8a)

becomes approximately

E T = 4G T

which inverts into

E (t) = 4G (t) (4.3.74)
T T

This result should, however, be regarded with great caution because

of the incompressibility assumption.
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APPENDIX

Internal Stresses

The general correspondence principle which relates elastic and visco-

elastic solutions, as discussed in par. 4.I.B , makes it possible to write

down Laplace Transforms of viscoelastic stresses if expressions for elastic

stress are known. Inversion of the transforms gives the stresses as fJnctions

of space coordinates and time.

It should be noted that numerical elastic results cannot be converted

into viscoelastic results by means of the correspondence principle. In order

to obtain numerical viscoelastic resAts it is necessary to analyze numerically

the viscoelastic boundary value problem of a composite in the space-time

domain, which is a very complex undertaking. It appears that no such

nL_merical work has been carried out to date.

Let it be assJmed that a viscoelastic FRM is subjected to the

boundary condition

O
T.(S,t) = _ n H(t) (1)

1 ij j

If the stresses which result from (1) are found and are momentarily denoted

H

ij
(x,t) , then the stresses in the case where H(t) is replaced bya general

function F(t), t "_ O, are given simply by

t

'_-ij (x,t)_ =/ '"ij"H (x, t-T)_ d F('r)dT d, (Z)

o

The LT of (1) is given by
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_,_ .^ 1 o
(3)= -- n.

1 p 1] ]

this being the boundary condition for the associated "elastic" problem with

TD phase moduli Ffjkl

A

(p) = PCijkl (p)"

Consider an elastic FRM, of entirely identical phase geometry, which

is subjected to the boundary conditions

O
T. (S) = a n (4)

1 ij j

Let the internal stresses under (4) be denoted

(x) : f [e_c(m),[g]] (5)
t] ij

where ec(m) is a compact notation for elastic phase moduli and {g} denotes

the phase geometry. It follows from (3), (5) and the correspondence principle

that the stresses in the associated "elastic" problem, thus the LT of the

viscoelastic stresses, are given by

_.. (x,p) = i__ f.. [p_(m)(p)_ , {g] ] (6)
11 p l]

where _m)c((15) is a compact notation for the LT of the phase relaxation moduli

and [g} indicates the same geometry.

It follows that if expressions (5) for elastic stresses are known, expres-

sions (6) for LT of viscoelastic stresses can be written down at once by replace-

ment of all phase elastic moduli in (5) by TD phase moduliand division by p.

The remaining, and major problem is then to invert (6) into the time domain.
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Again the initial and final value correspondence principles, which were

proved in par. 4.2.2 for effective viscoelastic properties, are very helpful.

It follows by similar reasoning that initial and final values of viscoelastic

stresses under boundary conditions (1) are given by

:.,(x_,o) = e<_..[_c(m)(o), !.g] ]
I] H

(7)

e.,(x, _) e (m)= {g] ]
l] l]

which implies that initial/final stresses are simply found by replacement of

phase moduli in the elastic stress expressions by initial/final values of

phase relaxation moduli.

The general approach outlined here will now be applied to obtain

some results for internal stresses in viscoelastic composite cylinder assemblages.

It is recalled that results for internal elastic stresses were given in Appendix 2,

Chap. 3.5. From the point of view of conversion to viscoelastic results, the

simplest case is that of axial shearing.

Let a fiber reinforced cylindrical specimen with viscoelastic matrix

and elastic fibers be subjected to the axial shearing boundary condition

o n2 H (t)T 1(S,t) = <_12

O

T 2(S,t) = o 12 nl H(t) (8)

T3(S,t) = 0
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o H(t)
in which event the only surviving average stress is o 12

the LT of the stresses can be obtained from Appendix 2, (2i),

present (6) in the following form

In this case

(?_6-? 7) and the

o GI(P) 7(p)+l+[y(p)-lJaZ/r 2
_(1)(r,e,p)= _ cos
rz 12 ^*

PGA(P) y (p) v I + 1 + v 2

o GI(P) v(p)+l-[_(P)-l]aZ/r2 sin (9_o(I)(r,0,p)=- o
(gz 12 ^ *

pGA(p) _(p)v I + 1 +v 2

8 (2) (r,(9,p) =2o ° G2 cos %
rz 12 -2^*

p GA(p ) 7 (P)Vl+l+v 2

(9)

o G2 sin @
,_(2) (r,@,p) =- 20
°@z 12 2,-*

p OA(p ) 7 (P)VI+I+v 2

G 2
_(p)= _

;%

pG I (p)

A *

where G A (p) is gfven by (4.3.6f).
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If the matrix viscoelastic behavior is idealized by a differential operator

stress-strain relation, then (9) can be inverted in elementary fashion. The

necessary calculations become heavy unless the matrix is represented by

very simple viscoelastic models.

Application of the initial and final value correspondence principles

to the elastic axial shearing results easily yields the following expressions

o _,(o)+l+_\_(o)-i]aZ/rzo (i)(r,@,o): _ cos @
rz 12 y (o)(l+v2)+v I

o y(o)+1-_ (o)-i]aZ/rz(i) (r,@,o) : c_ . sin @

@z 12 _f(o)(l+v2)+v I

<_(2) (r,@,o) =2o ° - _(o)

rz 12 T(o)(l+v2)+v I cos @
(I0)

o _,(o)
'::@z(2)(r,@,o) : - 2_12 _'(o)(1+v2).+v I sin @

G 2
(o)-

G 1(o)
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_,i,r_ (r,O _) = (7°

rz ' 12

1+a 2/rZ

l+v 2

cos @

(1) (r,O,°°)=- o
• Oz 12

0

2_12cos @(z)
o (r,e,_) -
rz l+v 2

1-a 2/rZ

l+v 2

sin @

(11)

<5'2'__ (r,O,_) -
8z

o sin 8
2°12

l+v 2

It has been assumed in (11) that GI(=) is infinitely smaller than G 2.

The maximum matrix shear stress is obtained at r = a, 8 = o.

We have from (i0-ii)

T (o_) l-v z o 1 (o)max - I + (lZ)
"r (o) l+v 2 G 2max

which shows that T (co) is larger than _ (o).
max max

If it is assumed that the fibers are rigid, it is found that the matrix

stresses are given by (ii) for the whole time range t ->o. This easily shown

by first specializing the elastic stresses to the rigid fiber case by setting

7 -_=, and then applying the correspondence principle.
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It is also not difficult to show that foranv FRM with rigid fibers,

internal stresses under boundary condition (8) are the same for elastic and

viscoelastic matrix.

A similar conclusion can be established for transverse shearing, but

only ifthe matrix is also incompressible.

Next we consider the case of uniaxial stressing. The appropriate

boundary conditions are

O

T1(S't) = _ii nl H(t )

T2(S,t) = T 3(S,t) : 0

(13)

Important elastic stresses are given by (14-18) , Appendix 2, Chap. 3.5.

The initial and final values of the axial stresses in fiber and matrix are

found to be with very accurate approximation.

@
(i) _ o

(o):
zz ii

E1(o)

EA(O)

(2) _ o E2

o (o)= _izz 1 *

EA(O)

(14)

(i)
(_) o

zz

o
0

(2) (_o)_ ii
zz v

2

(15)
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where EA(O) in (14) is given by (4.3.29a) (the third term of which may be

disregarded) and (4.3.11) and (4.3.29b) have been used to obtain (15).

It is seen from (15) that after long time the fibers are taking the entire

axial load.

The methods described here may evidently be applied to obtain the

viscoelastic counterparts of other elastic stresses in FRM such as those

produced by plane-isotropic loading. There is also no difficulty to treat

displacement boundary conditions (relaxation) and to find viscoelastic

de format ion s.
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4.4 DYNAMIC LINEAR VISCOELASTIGITY

4.4.1 General Dynamic Problem

We shall now consider linear viscoelastic bodies, as defined in par.

4.1.1, under dynamic conditions, in which case the inertia terms have to be

incorporated into the equilibrium equations.

(4.1.45) , the equations of motion

oij ,j (x,t) = pUi(x,t) (4.4. i)

In this event we have instead of

where p is the density which is here assumed constant and the dots above u i

denote partial time derivative.

To obtain differential equations for the displacements it is customary

to substitute (4.1.2a) into (4.4.1), Then are obtained the equations

t

f[Cijkl(t-T) _ (x,t)] dT = p_i(x,t) (4.4.2)_--_" Uk_ I -- ,]

The use of (4.1.2a) in the present dynamic case can be interpreted in

two ways. Firstly, it may be assumed that the Cijkl in (4.4.2) are the

relaxation moduli obtained from a quasi-static experiment. Secondly, it may

be assumed that this is not the case, but that the Boltzmann superposition

principle is valid also for the present dynamic situation. Then (4.1.2) are

dynamic constitutive relations in which Gijkl have to be obtained from some

d yna mic experiment°
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Appropriate boundary conditions are again

o
u. (S,t) = u on S (a)
i i u

T. (S,t) T°= . on S (b)
I i T

These have to be supplemented by the initial conditions

ui(x_,o)= fi(x_) (a)

(1.(x,o) = gi(x)1 --

(4.4.3)

(4.4.4)

(4.4.2-4) mathematically formulate a general class of problems inEqus.

dynamic viscoelasticity.

Extension to heterogeneous bodies is obvious. Equs. (4.4.2) apply

separately for the different phase regions with appropriate phase Cijkl and

there are added to (4.4.3-4) the interface conditions (4.1.49).

We shall not be concerned with dynamic problems of such generality.

It is our purpose to consider the case of steady state vibrations. This is

done in the next paragraph.

4.4.2 Viscoelastic Vibrations: Complex Moduli

Let the time variation of strain at a typical point be sinusoidal.

than consider the cases

Rather
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¢ij (x,t) =

"_ij (x) sin wl *)

(x) cos
1]

separately, we use the more convenient complex representation

¢.,(x_,t) = e.. (x_) e (4.4.5)
U l]

where & = _/-1, _ is the frequency and ¢.. may be real or complex. In the
U

former case ¢_.. is the amplitude. Suppose that ¢.. is real. If (4.4.5) is
l] z]

inserted into the usual elastic stress-strain relation we find

b _t
o (x_,t)= "q'.. (x_) e (a)

ij i]

_ij (x) e "_ (x) (b)- = Cijkl Ckl --

(4.4.6)

It is seen that stress and strain vibrate in phase and that their amplitudes

_.. and e..
z] i]

are related by the elastic stress-strain law.

We now adopt a similar procedure for viscoelastic materials and insert

(4.4.5) into (4.1.2a). This yields

t

f Cijkl(t_T ) Lwtqij(t) = Ckl _u0 e

_CO

dT (4.4.7)

(_)The "_ sign above a quantity, as will be used here and henceforward, should

not be confused with a similar notation in chaps. 3.6, 3.7 where it denoted

admissible fields.
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where the x argument has been suppressed

variable y =t - T in (4.4.7) gives the result

I:O

&wt JfCijkl(Y ) - &wYoij(t) ='_kl e Lw e

O

for convenience.

dy

The change of

(4.4.8)

We define

00

Dijkl( & w) = &w/Cijkl(Y) e-&_YdY (4.4.9)

0

It is seen that (4.4.9) is a one sided complex Fourier transform. There may

arise problems with respect to the existence of the integral (4.4.9) which

shall not be discussed here. The reader is referred to [4.1].

In view of (4.4.5) and (4.4.9), (4.4.8) may be rewritten in the form

oij (t) = "_ij e 6wt (a)

(4.4.10)

"_ = D "_ (b)
Oij ij kl _kl

It is seen that (4.4.10b) has the appearance of an elastic stress-strain law.

Therefore Dijkl are called the complex moduli of the viscoelastic material.

They may also be written in the form

R IDijkl(&w) = D kl(W) + &Dijkl (w)
(4.4.11)

where D R and I
1]kl Dijkl are the real and imaginary parts, respectively, It

should be noted that _ij is complex, even when ¢ij is real, and is thus not

the amplitude of o.,.
I]
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The physical meaning of (4.4. i0) is best obtained by insertion of

(4.4.11) into (4.4.10b) and computation of stress from (4.4.10a). We then

have for ¢.. real
z]

(D R
oij(t) = ijkl cos wt - D[jkl sin wt) Ckl +

+ & (DI_jkl sin _t + D! ""zjkl cos _t) Ckl (4.4.12)

It is easily seen that the real part of (4.4.12) is the response to a strain

vibration Ckl cos wt while the imaginary part is the response to a strain

vibration Ckl sin Ct . Unlike elastic vibrations, (4.4.6) , the stress and

strain vibrations in the present viscoelastic case are not in phase.

We can define complex compliances in completely analogous fashion.

We assume a stress vibration

o (t) = _ e (4.4.13)
z] z]

and we insert (4.4.13) into (4.1.2b) .

_wt

¢ij (t) = ¢ij e

We then obtain

(a)

¢ =R o
1] zj kl kl

Rijkl (C_) = &_/Sijkl(Y )

"o

e &wY dy

(b)

(c)

(4.4.14)
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where Sij kl are the creep compliances.
The tensor components Rijkl

are

called complex compliances.

If it is assumed that Cijkl(t) and Sijkl(t) are ij, kl symmetric then the

same follows, because of (4.4.9) and (4.4.14c) , for the complex moduli

Dijkl and the complex compliances Rijkl. Evidently, because of o'_ij and e_ij

symmetry, Dijkl and Rijkl are also i,j and k,l symmetric. In summary

Dijkl = Djikl = Dijlk = Dklij

Rijkl = Rjikl = Rijlk = Rklij

(a)

(b)

(4.4.15)

Eurthermore, since (4.4.10b) and (4.4.14b) are one and the same equation,

we conclude that the complex moduli and complex compliances tensors are

reciprocal. Thus

Dijrs Rrskl = Iijkl (4.4.16)

Next, we note an important connection between Laplace transforms of

relaxation moduli (creep compliances) and complex moduli (complex compliances).

Recall the definition (4.1.31) of TD moduli which may be written

CO

Fijkl(P) = p f Cijkl(t) e -pt dt

O

Comparison with (4.4.9) shows that
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I'ijkl(&W) = Dijkl (_w) (a)

Dijkl (p)= Fijkl(P) (b)

(4.4.1 7)

which implies that if Fijkl(P) is known, replacement of p by &w yields the

complex moduli, and if Dijkl(&w) is known replacement of &w by p yields

the TD moduli. Similar relations may be obtained between TD compliances

and complex compliances.

We have so far been concerned only with generally anisotropic bodies

and we shall now consider the case of material symmetry. It is seen that

the complex stress-strain law (4.4.10b) has the same form as an elastic

stress-strain law. Thus, symmetry reductions for elastic stress-strain

relations are immediately applicable in the present case.

For an isotropic material (4.4.10b) assumes the form

= "_ . + 2_ (&w) "_ (4.4.18)
aij(&w) _ (&w) Ckk 6i] eij

or equivalently

= ( I,w) (a)

(4.4.19)

_'.. = 2_" ( & w) _.. (b)
i] i]

where K and G are the complex bulk and shear moduli, respectively; _ and _
i]

are the isotropic and deviatoric parts, respectively, of _. and "¢ and _
i] i]

are the isotropic and deviatoric parts, respectively, of "_...
1]
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Other complex moduli are defined just as ir elasticity and all the

relations between elastic moduli as listed in (3.4.88-90) carry over unchanged

to complex moduli. Similarly, the complex stress-strain relations for a

transversely isotropic material have the forms (3.4.86-87) with appropriate

complex moduli.

Relations of type (4.4.17) between TD moduli and complex moduli

can also be written down at once.

example

K( w)

We have for the isotropic case, for

(a)

G (&w) = r (&_) (b)

(4.4.20)

where the right sides of (4.4.20) are defined by the p functions (4.1.34).

For viscoelastic stress-strain relations in differential operator form,

(4.1.21) , we have from (4.1.42) and (4.4.20)

i S( i, w) (a)
K ( Lw)- 3

1 P( $ w)

G (t w)- 2 QCLw) (b)

As an example consider the case of the simple Maxwell model.

(4.4.21b) and C4.1.43a)

(4.4.21)

We have from

N

w_ (4.4.22)
GM(&w) = 1 + £wT
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Complex moduli are often written in the form (4.4.1 1). The complex

shear modulus, for example, may be written

G (&,_) = GR(w) + &GI(_) (4.4.23)

Another frequently used form is

_5
G (&w) = ]Gi e (a)

IGI = _/(GR)2+ (GI) 2
(b) (4.4.2 4)

G I
tan 6 -

G R

Cc)

The angle 5 is called the los s a ng..le and tan 6 is called the loss tange n_!.

Finally we note by comparison of (4.4.6b) and (4.4.10b) that for

an elastic material the complex moduli are just the elastic moduli. In that

case the real part of the complex modulus is the frequency independent

elastic modulus and the imaginary part vanishes as also does the loss angle 5 •
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4.4.3 Viscoelastic Vibrations: Boundary Value Problems and Correspondence

Principle

We consider a viscoelastic body which is subjected to displacement

or traction boundary conditions which vary sinusoidally in time. A general

form of such boundary conditions is

u (s,t) no _ti = u i (s)e (a)

(4.4.25)

T.(S,t) =T °. (S) e I'wt (b)
1 1

0-_0
where u . (S) and T

1 i
(S) are time independent. By taking real or imaginary parts

of (4.4.25) we obtain the cases of cosine and sine vibrations, respectively.

It is seen that the class of problems considered is that of forced vibrations

of viscoelastic bodies. To obtain a mathematical formulation it is assumed,

and later justified, that the internal displacements have the form

u.(x,t) = u'i(x_) e but (4.4.26)
1

It follows that the strains have the form (4.4.5) where

eij = _- (_l,j + _'j,1 ') (4.4.27)

and that the stresses are given by (4.4. i0).

To obtain differential field equations, the stresses (4.4.10a) are

expressed in terms of (4.4.10b) and (4.4.27) and are then substituted into



480

the left side of the equation of motion (4.4.1), while (4.4.26) is substituted

into the right side Cancelling the common factor e &wt. we obtain

Dijkl ([W)Uk,lj+ pw u.1= 0 (4.4.28)

From (4.4.26) and (4.4.25) we obtain

,.. ,--,O
u (s) = u (a)

1 1

~T, (S)= (b)
1 1

(4.4.29)

where

T i (S) = Dijkl(Lw) Uk, 1 nj (4.4.30)

This completes the mathematical formulation of the viscoelastic

vibration problem. The space dependent parts u_i of the displacements are

uniquely determined by (4.4.28-29) which fact justifies the assumption (4.4.26).

They are in general complex since Dijkl is complex. The space dependent

parts of the stresses follow from (4.4.27) and (4.4.10b) and actual complex

displacement and stresses are obtained by multiplication of space dependent

&wt
parts by e . The real parts of displacements and stresses obtained give the

solution for a real boundary cosine input while the imaginary parts give the

solution for a real boundary sine input.

Note that in specialization of the general dynamic viscoelastic

problem of par. 4.4.1 to the present case of vibrations the initial conditions (4.4.4)
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have been disregarded. The reason for this is that the form (4.4.26) of the

displacements already specifies £1(x) and gi(x_) in (4.4.4).

Evidently, the boundary value problem (4.4.28-29) includes as a

special case the problem of vibrations of an elastic body. In that case the

complex moduli in (4.4.28) have merely to be replaced by the elastic moduli

eCijkl, since as has been pointed out in par. 4.4.2 complex moduli reduce

to elastic moduli for elastic materials. Consequently, the problems of

elastic and viscoelastic vibrations are mathematically analogous for the

complex formulation of the latter. This analogy forms the basis of a

correspondence principle for viscoelastic vibrations which may be summarized

as follows: Let the solution of an elastic vibration problem be

e,_ e_t, e._ (x) e &_t
ui(x) oij . The complex solution of the geometrically

identical viscoelastic problem is then _i (x__)e &wt "_ (x) e t'_t• , cij -

._ e._ e
where ul (x)_ , o ij (x)_ are obtained by replacing in u i (_x) , aij(x)_ the

elastic moduli by the viscoelastic complex moduli. (compare e.g. [4.153 )
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EFFECTIVE COMPLEX MODULI (*)

4.5.1 Definition and Correspondence Principle

In attempting to formulate a theory of dynamic behavior, in general,

or of vibrations, in particular, of viscoelastic composites, we encounter the

same kind of difficulties which were discussed in chap. 3.9 with respect to

elastic composites. We therefore confine ourselves to the first approxima-

tion whose fundamental assumption is that macro-stress and macro-strain,

i.e. local averages over RVE, are related by a classical type stress-strain

relation, in terms of the usual effective physical constants. If this appro-

ximation is adopted it is possible to establish a set of differential equations

for the space dependent parts of the macro-displacement (local averages)

intwo phase materials, which are similar to equs. (4.4.28) . These equa-

tions contain as coefficients the effective complex moduli to be discussed

here and also effective densities which are not the average densities and

are moreover complex numbers (to be published).

In the elasto-static or elasto-dynamic case the relation between

macro-stress and macro-strain is expressed by equ. (3.9.8) . Accordingly,

in the present case such a relation will have the form

o (x)=D ( ) (4.S.I)
ij ijkl Ckl -x--

where oij and eij are defined by

(*) The theory and results given in this chapter are based onrefs. [4.16-18].
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- - l,wt

Oil (x__ ,t)= oij (x_)e Ca)

- -_ &wt

¢ij (x_,t)= ¢ij (x)e (b)

(4.s.2)

e

Here oij and eij

and time dependent and Dijkl

(ECM) of the viscoelastic material.

,

To obtain information about D ijkl

in the derivation of (4.4.9).

are macro-stresses and macro-strains which are space

are defined as the effective complex moduli

we proceed as in par. 4.4.2

We insert (4.6.2b) into the effective visco-

elastic stress-strain relation (4.2.5), with an hereditary integral whose lower

limit of integration is -_ . We then obtain exactly as in par. 4.4.2

co

f , _ _y• (I._) I._ (y) e dy (4 5.3)
D fj kl = C ij kl

0

which relates the effective complex moduli to the effective relaxation moduli.

In completely similar fashion we can obtain the form of effective

complex compliances Rijkl. Thus

Rijkl (£w) = _w S e dy

O

(4.5.4)

It follows from (4.2.10-11) and (4.5.3-4)that

W * * *

= D jikl =D ijkl D ijlk = D klij

Rijkl = Rjikl = Rijlk = Rklij

Ca)

(b)

(4.s.s)
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We also have the reciprocity relation

Dijrs Rrskl = Iijkl
(4.5.6)

which is proved just as (4.4.16).

We now recall the definition of TD effective moduli (4.2.18) which

is here rewritten in the form

co

* f * -ptFijkl (p)=p Cijkl (t) e dt (4.5.7)

Comparison of (4.5.7) with (4.5.3) shows that Fijkl depends functionally

on p just as Dijkl depends functionally on w •

that

Dijkl(_ w) = rijkl (L w) (a)

, . i

rijkl (p)= D ijkl (p) [ (b)
I

This implies that if I'ijkl (p) are known, D ijkl

ment of pby l.w .

by replacement of

We, therefore, conclude

(4.5.8)

Conversely, if D

&w byp.

ijkl

(&w) is obtained by replace-

(_w) is known, Fijkl(P) may be obtained

Next we recall the static correspondence principle for viscoelastic

composites, equ. (4.2.21). It follows from this principle and from (4.5.8) that

* e * iF (m)
Dijkl(_) = Cijkl (&w), {g]] (4.5.9)
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where r "(m) (&w) is a symbolic notation for the left side of (4.4.17a),

associated with the phases and {g] denotes phase geometry. But by

(4 4 17a) _(m) (_) are the phase complex moduli D (m)
• " l_ijkl ijkl ( l, _)

Consequently, (4.5.9) may be rewritten as

l"Dijkl (_) = eC_jkl [--D(m)( _ _), [g}] (4.5. lo)

Equ. (4.5.10) expresses the correspondence principle for vibrations

of viscoelastic composites. In words: The effective complex moduli of a

viscoelastic composite are obtained by replacement of phase elastic moduli

by phase complex moduli in the expressions for the effective elastic moduli

of a composite with identical phase geometry.

In the event that a certain phase is elastic, its phase elastic moduli

are left unchanged in the eCqjkl expressions, since the complex moduli of

an elastic material are its elastic moduli.

Note that the present correspondence principle is much easier to use

than the one for static viscoelasticity of composites, since the complex phase

moduli are directly obtainable from experiment. Thus, expressions for

effective complex moduli are obtained in a rather simple fashion in terms of

experimentally measured quantities. It is recalled, in contrast, that in

the static case the correspondence principle leads only to Laplace transforms

of effective viscoelastic properties, whose inversion may lead to considerable

difficulty.
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On the other hand, it should be noted that the present concept of

effective complex moduli is based on a physical approximation, which was

called the first approximation . This limits the applicability of the present

theory to some unknown frequency range.

It should be further noted that the existence of the present powerful

correspondence principle was to be expected on the basis of the first approxi-

mation and the correspondence principle for viscoelastic vibrations as for-

mulated in par. 4.4.3. The first approximation for vibrations of elastic

composites states that a macro-theory in terms of local averages may be

approximately formulated in the form of a classical theory with the usual

effective elastic moduli. In view of the correspondence principle for visco-

elastic vibrations it is not surprising that the effective complex moduli which

enter into the first approximation theory for vibrations of viscoelastic com-

posites depend upon phase complex moduli, just as effective elastic moduli

depend upon phase elastic moduli.

For purposes of illustration and subsequent usage, we specialize

the principle (4.5.10) to the case of a composite which consists of two iso-

tropic phases, but is otherwise macroscopically anisotropic (e.g. fiber-

reinforced). Let the EEM of a composite with identical phase geometry

be written
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e * = e * e eG e e
Cijkl Cijkl ( KI• 1 • K2• G2• {g] )

Then the effective complex moduli are

Dijkl(_ m) = Cijkl [K I (l,w)• Gl(_W) • K2(_w),G2(_),{g])

If the phases are assumed elastic in dilatation• then K 1 ( _ m)

become the real and frequency independent elastic K 1 and K2.

In FRM the fibers are usually elastic and the viscoelastic effect

is thus confined to the matrix. For reasons of simplification it shall be

mostly assumed that the matrix is elastic in dilatation.

and K2( L w)

assumes the form

Then (4.5.12)

iDijkl (L _) = eC;jkl [K I, G 1 (l,w), K2, G 2 ] (4.5.12)

(4.s.11)

4.5.2 Effective Complex Moduli of Fiber Reinforced Materials

The correspondence principle for effective complex moduli (ECM)

which was derived in par. 4.5.1 enables us to write down at once expressions

for ECM of FRM in all cases where analytical expressions for EEM are known,

It is not possible to thus exploit the correspondence principle for numerical

results for EEM.

The viscoelastic matrix properties may be characterized by the

complex bulk and shear moduli and associated loss angles. Thus
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Ki(_®)

tan 6
KII

+ _KII (w) (a)

(b)

(4.5.13)

GI( _ w) = GIR(w) + _Gi I (w) (a)

(4.5. i4)

G iI

tan 6G - R

G 1

(b)

Other matrix complex moduli are related to (4.5.13a) and (4.5.14b) by

elastic type relations. Thus

-_ 9K 1 (_w) Gl(_W )
E 1 ( _ _)= (a)

3K 1 (_w) + Gl(_,w )

3Ki(_w) - 2Gl(&W )
vi (_ w)= (b)

2[3Kl(_W)+Gl(_W)

(4.5. i5)

l
k'i(_w) = KI (_w) +-_- Gl(CW ) (c)
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According to the correspondence principle of par. 4.5.1 any ECM

is obtained from a corresponding EEM expression by replacement of the

matrix elastic moduli by the appropriate matrix complex moduli, while

the fiber elastic moduli are left unchanged. The resulting expression

for the ECM has then to be separated into real and imaginary parts. The

ratio between the latter and the former defines the effective loss angle.

We may thus exploit the expressions for EEM of the composite

cylinder assemblage model, par. 3.5.3, to write down corresponding

ECM . Results for the more important ECM, for elastic fibers and visco-

elastic matrix are listed below:

k
"kl(/,m)Ek2+Gl(/, m )] v I + k2[_l(l,w) + GI(I.w )}v"2

[k2+(_i($ oo)]v I + [_I (Cw) + _i (_w)Iv 2

E A (& w) = E1 (l,w) v I +E 2 v2 +

4[_ 2 -_l(l,w)] 2 v I v 2

Vl/k 2 + v2/_l@,_)+ I/G'I@.Ou )

(4.5.16)

(4.5.17)
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V
A (l,w)vI +v 2 v2

vl/k2 +v2/_i(_®) + 1/G 1 (_®)

GA (Lw)= O1
G 1 (&w) v I + a 2 (l+v2)

(L®) ~

O 1(_,oo)(i+v2)+a2 vl

% (_®)= G
i

+a'_(_w)v23 ]"~Lp(_w )+ "_81(&w )v_.] - 3v v 2_-_2(_w)
[i

2 1 1

@,_) v2 3 ][i+_ [p (&w) - v2J 3v2v # 812 (_w)

where

(_®) =
BI (l,w) - Y (l,w)82

i + Y (Lw) _2
o(_®)=

y(_ w)- i

(a)

(b)

(4.5.18)

(4.5.19)

(4.5.20)

1

B2 - 3 -4 v 2

.._ G 2

G i(_w)

!
(c)



491

e *

Again (3.5. 113) has been taken as an ad-hoc expression for G T of the

.WW

composite cylinder assemblage, thus yielding (4.5.20) as an ad-hoc G T'

In this respect it is noted that Christensen [4. 193 has given a method by

which effective shear modulus bounds for the composite spheres assem-

blage model, [3. i13, can be transformed into bounds for the effective

complex shear modulus real and imaginary parts of the same model. No

doubt, the method can also be applied to derive similar bounds for the

(*)
composite cylinder a s s emblage.

E (_w)
T

In view of (3.4.83-84), the transverse complex Young's modulus

is given by

ETC_W)=

4_* *(_w) G (_)
T

k (_ w)+m(& W)GT(LW)

E(_w) = i +

2

4_*(&w)[V A (&w)]

E k (&w)

(a)

(b)

(4.5.21)

The matrix complex moduli appearing in (4.5.16-21) are given by

(4.5.13-15). Each of these has to be written in the complex number forms

(4.5.13a-14a). The resulting ECM expressions may then be separated into

real and imaginary parts, While this presents no fundamental difficulty,

the required algebra is very heavy in many cases.

(*)Sfmple general ECM bounds, for isotropic composites of arbitrary phase

geometry , have been obtained by Roscoe [4.13] .
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In order to simplify the results we idealize the matrix viscoelastic

behavior in the following fashion:

(a) The matrix behaves elastically in dilatation.

reduces to

"W

K 1 (&w) = K 1 (4.5.22)

where K1 is frequency independent. (Evidently the loss tangent (4.5.13b)

then vanishes).

(b) The shear loss tangent of the matrix is so small that its square can

be neglected with respect to unity. This implies that in (4.5.14b)

2

tan 6G < < 1 (4.5.23)

This implies that (4.6.13a)

The viscoelastic behavior of a respectable number of polymeric materials

may be well approximated by (4.5.22-23), at moderate temperatures. It

should, however, be borne in mind that (4.5.23) may be seriously in error

beyond the glass transition temperature.

Separation of the ECM expression (4.5.16-21) into real and

imaginary parts is now greatly facilitated by the following observations.

Firstly, it is easily proved that if the condition (4.5.Z3) applies, the loss

tangents of any of the complex moduli (4.5.15) also obey a similar condition.

Secondly, it may be proved (to be published)that for the conditions (4.5.22-23)

the real part of any ECM is obtained by replacement of elastic phase moduli

in the corresponding effective elastic modulus expression by the real parts

of the complex phase moduli. In symbols, let M be any effective elastic
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modulus which is written as

M =F(K I, G I, K 2, G 2,{g])
(4.s.24)

where {g} denotes phase geometry. Under the conditions (4.5.22-23)

*R
the real part M of the corresponding ECM is then given by

M'R= F[K I, GR(w), K2, G2,[g}]
(4.5.25)

*R

Note that since G1R is a function of the frequency w , so is M .

If in the EEM expression there appear the elastic moduli, E l,

R and k I toVl and k I, then these have to be replaced by ElR, _I

obtain the ECM expression. These real parts are given in view of (4.5.15)

and (4.5.22-23) by elastic type relations

ER(w) = 9KIGI R(w)

3KI +GR(w) (a)

R 3K1-2GIRCw)

_l (w)= (b) (4.5.26)

2 [3 Kl+G iR(w)]

I GRcw)kR(w) = Kl +_" (c)

*I
M

Thirdly, it can be proved (to be published)that the imaginary part

is given by
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*I I
M =G 1 R

_G 1

(4.5.2 7)

It follows from (4.5.25), (4.5.27),that the loss angle is

*I G? *R
* M 8M

tan 6 -
tan 6 GM *R *R R

M M _G 1

(4.5.28)

where tan 6 G is the matrix shear loss tangent.

We now proceed to apply the above given results to obtain ECM

expressions.

The real and imaginary parts of _*( & _) are easily found to be

k,R= k? (k2 + G?)v I +k 2(kl+G?)v 2

(k2 +G?)Vl + (k?+G?)v 2

k*l= 3 G 1

2 R 2

(k?+G1 R) - 4Vl(k2-k 1 )

[ (k2+GIR) Vl +(k?+G ?)v2] Z I

(a)

(b)

(4.5.29)

The real part of E A (& _ ) is given by (3.5.96) with matrix elastic

moduli replaced by the real parts of corresponding matrix complex moduli

which are interpreted as (4.5.26). Then the third term in the expression_Dr

*R *

E A Is negligible, just as in the case of the elastic E A . It is also easily

shown by use of (4.5.27) that the third term contributes very little to

*I
E

A
Accordingly we can approximate (4.5.17) with high accuracy by

EA(&_ _ El(& w) v I +E 2 v 2 (4.5.30)
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It follows very simply that

where

*R R

EA =E 1 v I +E 2 v 2

*I I

EA = E 1 v I

,I

. E A

tan 6 E *R

E A

I

E l

tan 6E -

tan 6E

E 2 v 2
i+

R
E
1 Vl

(a)

(b) (4.5.31)

(c)

Note that in the usual fiber reinforced materials E2/ER is a large

number of the order of 25-60, while v 2 and v I are of comparable magnitudes

W

(i.e. v 2 = 0.5 - 0.7 , Vl= 0.5 - 0.3). It follows that tan6 E is a much

smaller number than tan 6E,Which implies that a fiber reinforced cylinder

displays much less viscoelastic effect in oscillatory axial stressing and

straining than a similar matrix cylinder. This is, of course, physically

plausible since the stiff elastic fibers inhibit the axial deformation which

would develop without presence of fibers. It is recalled that similar conclusions

were reached in the static case, par. 4.3.2, sub. par. 4.3.2.2.

The real part of the complex Poisson's ratio (4.6.18) is given by
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*R R (v2- vR)(I/kR -i/k2)Vl v2

_A = _l Vl + v2 v2 + (4.5.32)

Vl/k 2 + v2/kiR + i/G1R

R R *I

where Vl and k 1 are defined by (4.5.26b,c), The computation of vA is

complicated because of the third term in the right sides of (4.5.18) or (4.5.32).

The contribution of this term is not substantial though its neglect leads to a

larger error than in the case of E A (_). We do not take into account this

term here and we can write accordingly

*I I
VA "_ _1 Vl (4.5.33)

where

9K 1 GII

2 (3Kl+G 1I)

the last expression following from (4.6.15b), (4.6.22) and (4.6.23).

Next we consider the ECM G A(&w). It is easily found that

* R 7R(l+v2 )+v
GA =G1 R i

YR Vl+V2 (a)

*I

G A = G I

I _YR +I)2 + VZ(YR - 1)2] Vl

(yRVl + 1 +v2 )2

(b)

(4.5.34)
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where

G 2

YR R
G 1

The ECM G (g _) is unfortunately very complicated as can be
T

*R
seen by the form of (4.5.20). Still the real part G T is easily obtained by

W

replacement of all matrix moduli in the expression for the elastic G T, (3.5. 113),

by the corresponding real parts of matrix complex moduli, G, R and v, R as

given by (4.5.26b). We thus obtain

where

3 2 2
*R (1 + )(p + B1 -3v 2 v 1

G T = G? (zv2 v2) 81
2

(1 + av/)(p -v 2) - 3v 2 v? 81

81 - YR82 YR + 81

a= P- - 1

1 + YR 82 YR

(a)

(b) (4.5.35)

[

1 1

81 - R 82 = 3 - 4v 2
3 - 4_ 1

(c)

*I

To find an expression for G T itis necessary to carry out the

differentiation in (4.5.27) or to separate out the imaginary part of (4.5.20).

This requires extremely cumbersome calculations which will not be performed
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here. Instead we consider the simplified case of perfectly rigid fibers.

In that event YR-" m in (4.5.35) and we obtaina result analogous to (3.5.115d)

2

*R= -----(l-v23)(l+81v2)--------3v2 v12 81 (4 5.36)
2% 2) -3v2

where 81 is given by the first of (4.5.35c).

loss angle by use of (4.5.28) and (4.5.36).

We compute the transverse shear

The result is

l

tan6GT | i - _- (l+v)(i-2_ ) 81

3

l-v 2 + 3v 2 v I 81(81 +2)

2 2

(l-v2-3v 2 v I 82 )[(l-v3)(l+81Vz)-3v2 v I 81 ]

tan 6G (4.5.37)

Several numerical calculations have shown that the second term in the

parenthesis of (4.5.377 is a small number of the order of 0.05. It may therefore

be concluded that for rigid fibers

tan6GT ._ tan 6 G
(4.5.38)

and it is very likely that such a conclusion is also valid for fibers which are

very much stiffer than the matrix, as is the case in many FRM. Consequently,

*I

the approximate relation (4.5.38) enables us to compute G T in the following

*R
approximate fashion. First G T is computed from (4.5.35) and then

*I *R

G T ._ G T tan6 G (4.5.39)
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The approximations (4.5.38-39) are related to some rigorous results

for the shear loss angle of FRM with rigid fibers, which will be derived

further below.

Equ. (4.5.21) may be now exploited to obtain the real and imaginary

parts of E T ( & w) • It is readily shown that for the simplifying assumptions

(4.5.22-23),

*R

ET

*R *R

4k G T

*R *R

k + mRG T

m R 1 +

2
*R *R

4k (vA )

*R

EA

(a)

(b)

(4.5.40)

*I

There is no special difficulty to obtain ET but the result is

cumbersome and will not be given here.

It will be recalled that in the discussion of static viscoelastic

properties of FRM, par. 4.32, great simplification was achieved in some

cases by the assumption of rigid fibers. We now consider similar simplifications

for ECM. Assumptions (4.5.22-23) are discarded at the present time.

Results for EEM in the case of rigid fibers are given by (3.5. 115).

We use the present correspondence principle to transform these into ECM.

It follows from (3.5. l15a) and (4.5.15c) that
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.... v 2
~* l [K z 4 (_®) ]
k (_w)= KI (_w)+ _- G I(_w)+ (_w)+ _- G I Z-v2

(4.s .41)

Separation into real and imaginary parts is immediate and yields very simply

1 + (KIR 4 v2k*R=K1R+_- G1R +_-Gl R) 1__2

k = K1 +_- G +(K +5-G ) l_v2

(a)

(b)

(4.5.42)

If assumption (4.5.22) is introduced, (4.5.42) reduces to

1 4 v2

k*R: K1+_-G_ +(_i+ Y G_ I 1__2 (a)

(4..5.43)

l+3v
*I I 2

k = G 1 (1 -v 2 ) (b)

I R
If (4.5. 23) is valid then

G 1 is much smaller than G 1 or K I, and it is

seen that in this event the loss tangent tan 6 becomes much smaller than
k

the matrix shear loss angle.

Next we consider the axial shear modulus as given by (3.5.1 15c).

The correspondence principle yields at once

"_, _" l+v 2

G A (I._) =G l(l,w) l-v 2 (4.5.44)
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Fromwhich it follows that

*R R l+v2
GA = G1 l-v 2

(a)

*I l+v2
(b) (4.5.45)

tan 6 = tan 6 (c)

G A G

The last result is of particular interest since it implies that the FRM axial

shear loss tangent is the same as the matrix shear loss tangent. This resui'_

resembles (4.3.54) and just as in that case it can be generalized to any

FRM with rigid fibers. To show this we use the general result (4.3.51) from

which it follows at once by the correspondence principle that

e w

.... N GA

GA( w)=G
1 eG

1

or in real and imaginary parts

*R *I e *

G A G A G A

R I e
G 1 G 1 G 1

(4.5.46)

The results (4.5.46) show that the ratio of real/imaginary part of axial complex

shear modulus to real/imaginary part of matrix shear modulus are the same as

the ratio of effective elastic axial shear modulus to matrix elastic shear modulus

and this relation holds for any frequency. It also follows from (4.5.46)
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that

tan 6 = tan 6

G A G

(4.5.47)

this relation thus being valid for any FRM with rigid fibers

Similar relations may be derived for G T (&w), by use of the general

relation (4.3.58). But it should be carefully noted that here it is necessary

to assume in addition that the matrix is incompressible. In this case it

follows that

e * ;!
-_. -_ G T .,t

G T (_w) = GI(_W) --

eG1 '

L ....................

from which we have

*R *I e *

GT _ GT _ GT

R * e

G 1 G 1 G 1

(a)

(4. S. 48)

tan 6 = tan 6

G T G

(b)

It has been previously noted, (4.5.38), that (4.5.48b) is approximately

fulfilled for stiff non-rigid fibers and for polymeric compressible matrix (Poisson's

ratio of order 0.35 - 0.40). On the other hand calculations show that (4.5.48a)

is liable to lead to significant errors when applied to such phase materials.
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It would seem therefore that it is best to estimate G (&w) by use of (4.5.35)
T

and (4.5.39).

The expressions for ECM given in this chapter easily permit numerical

computation in terms of measured matrix complex moduli. To give a simple

example we consider the case of a polyisobutilene matrix. Figs. (4.5.1-2)

show plots of real and imaginary parts of the effective complex axial shear

modulus GA(&W) as a function of log frequency, for different fiber volume

concentrations. It has been assumed that the fibers are rigid and thus

eqn, (4.5.45) has been used. The complex shear modulus variation of poly-

isobutilene (plots for v2 = 0) have been taken from [4.20].
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4.6 STRUCTURAL APPLICATIONS

4.6.1 Quasi-Static Theory and Examples

If we intend to use the effective viscoelastic properties,which were

derived in preceding chapters, for a theory of viscoelastic structures which

are made of composite materials, we encounter the same kind of difficulty

which was discussed in chapter 3.9 for elastic composites, since the

stress and strain fields in structures are in general not statistically

homogeneous.

The difficulty is resolved, or rather mitigated, as for elastic

composites by establishment of a first order approximation, in terms of

local averages, based on the assumption of local statistical homogeneity.

Indeed, the establishment of such an approximation is in all respects similar

to the development given in chapter 3.9. The local averages (3.9.1), (3.9.3)

and (3.9.6) now depend on space and time and the macro-equilibrium equations

(3.9.7) remain in the same form and now represent quasi-static equilibrium.

Thus for viscoelastic composites

_.. (x,t)

i] + F.(x, t) = 0 (4.6 I)
_x. I

I

The elastic macro-stress-strain relation (3.9.8) is now replaced by

its viscoelastic macro-counterparts
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t

_ij (x,t) = /
* _ - (x,T) dT (a)

Cijkl(t-T) _ Ckl --

(4.6.2)

t

/¢ij (x,t)=

--CO

S ijkl(t-T ) _---_ Okl(X__,T) dT (b)

where C ijkl(t) and S ijkl
(t) are the effective viscoelastic properties which

were discussed in preceding chapters.

Boundary conditions of form

o
u.(S,t) = u on S

1 i u

T. (S ,t) T °= . onS
t 1 T

are replaced by the boundary layer conditions

- o
u.(S,t) = u on S

t i u

T. (S, t) T °
= . on S T1 1

(4.6.3)

It is seen that (4.6.1-3) define a boundary value problem for ui_ ,t) which is in

all respects analogous to a typical quasi-static boundary value problem for

homogeneous viscoelastic bodies, the field variables and viscoelastic properties

of the latter being replaced by local averages and effective viscoelastic pro-

perties of the former. We conclude that all classical quasi-static viscoelasticity
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solutions and also viscoelastic strength of materials solutions generate similar

results for viscoelastic macro-displacements, strains and stresses of viscoelastic

composites, simply by replacement of homoqeneous viscoelastic properties by

effective viscoelastic properties.

For illustrative purposes we consider two simple examples: bending-

shear deflection of a fiber reinforced beam and torsion of a fiber reinforced

cylinder.

(a) Bending-shear deflection of beam

Considera homogeneous elastic beam as shown in fig. 4.6.1 . Let the

material be transversely isotropic with material axis of symmetry along the

beam axis.

equations

d2 bW

2
dx

Then the bending and shear deflections obey the differential

_ _ (x)
_AI (a)

b
W

S
w

W

d2 sw _ aq(x)

dx 2 GAA

S
w(x) = wb(x) + w (x) (c)

- bending deflection

- shear deflection

- total deflection

(b) (4.6.4)
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M

q

I

A

cL

EA

G A

- bending moment

- load per unit length

- section moment of inertia

- section area

- geometrical factor defined as first moment of area above neutral

axis divided by section width at neutral axis

- axial Young's modulus

- axial shear modulus

Equs. (4.6.4) may be found in any strength of materials book where

they are usually derived for isotropic materials. It is easily realized that they

also hold for the present case of transverse isotropy.

If we consider instead a viscoelastic transversely isotropic beam,

we have by the usual correspondence principle which was discussed in par. 4.1.2

d2Cv b

A

dx 2 PEA1

(a)

dZCv s c_
m

dx PGAA

(b) (4.6.5)

^ _b _ s (w-- +w c)

^ b ^ s ^ M and q are Laplace transforms of wb(x,t), w s(x,t),wherew , w , w,

w(x,t), M(x,t) and q(x,t) , respectively, and PEA and PGA are the TD (transform

domain) moduli.
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Consider the basic case

q(x,t) = q(x) H(t)

M(x,t) = M(x) H(t)

where H (t) is the Heaviside step function.

applied at t = 0, and is then left unchanged.

(a).) Then

_I(x,p)- q(x)
P

_(x,p) - M(x)
P

(a)

(b)

(4.6.6)

This describes a load which is

(Note that (b) follows from

(4.6.7)

Recall also the relations (4.3.25a) and (4.3.40) which are certainly valid

for homogeneous materials. Thus

^ _ 1
eA 2-_

pEA
(4.6.8)

^ _ 1
gA 2"k

p%

where e A and gA are the LT of the Young's and axial shear creep compliances,

eA(t) and gA(t), respectively Introduction of (4.6.7-8) into (4.6.5) leads to

expressions which may be inverted at once, the results being
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5Zwb(x,t) _ M(x)

x 2 I eA(t)
(a)

52wS (x,t) _ aq(x)

2 A
_x

gA(t) (b) (4.6.9)

w(x,t) = wb(x,t) + wS(x,t) (c)

Comparison of (4.6.4) and (4.6.9) shows that if the solution of an elastic

bending-shear deflection problem is known then the solution of the analogous

viscoelastic problem, with corresponding boundary conditions is simply

obtained by replacement of 1/E A and 1/G A in the elastic solution by eA(t) and

gA (t), respectively.

The macro-bending stresses are simply

_ M(x)z H(t)
xx I

It should be noted that it follows from superposition that if the load (4.6.6a) is

replaced by

q(x,t) = q(x) f(t)

where f(t) is any function, and the beam end conditions are kept the same, then

t

w(x,t) = f WH(X,t-T) f(T) dT
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where w is the deflection under (4.6.6a).
H

The macro-bending stresses become

- M(x)z
(_ - f(t)
xx I

Consider for example the case of uniform load per unit length of a

simply supported beam, in which case q=const, in (4.6.4b) and in (4.6.6a) .

Then the deflection at the center is

= 5q_ 4 + o_q £2

w ( _-- ) = 6 3 84IE A 8AG A
(4.6. i0)

(see e.g. [4.21]). Then fora viscoelastic beam

5qZ 4 aq£ 2

w(_--, t) = 6 (t) - 384I eA(t) + 8A gA (t) (4.6. ll)

Consider the same beam, except that the material is now fiber rein-

forced with fibers parallel to beam axis. By the first approximation, e A

gA(t) merely have to be replaced by eA(t) and gA(t). Thus

(t) and

6 (t) - sq£4384I eA* (t) + c_q_28A gA (t) (4.6.12)
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It is now recalled that it was shown in par. 4.3.2 , sub-par. 4.3.2.2.

,

that for stiff fibers the time variation of eA(t) is negligible and therefore

* 1

eA(t) _ .

EA(O)
(4.6.13)

EA(O) _EI (_)vl + E2 v2

In contrast, it was shown in sub-par. 4.3.2.3 that the time variation of gA(t) is

considerable. Indeed for rigid fibers, gN(t) is given by (4.3.57) in the form

gA(t) = 1l(t)

]--v 2

l+v 2

where Ii(t) is the shear creep compliance of the matrix, which varies considerably.

It is thus seen there is a fundamental difference between the two parts of (4.6.12).

The first part which is the bending deflection varies negligibly with time, while

the second, which is the shear deflection, increases with time. It is well known

fhat for elastic beams the shear deflection is generally very small in comparison

to the bending deflection (unless the beam is very short, in which case the

validity of the approximate theory is doubtful). It is seen by the present

example that this may not be the case for a viscoelastic fiber reinforced beam,

in which after the elapse of sufficient time the bending and shear deflections

may become of same order of magnitude. This phenomenon is easily understood

on physical grounds: Bending is produced by stresses normal to the section

and in this case the stiff fibers deform very little and constrain the matrix
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deformation. The shear stresses, however, act in the matrix parallel to the

fibers and in this case the matrix easily deforms by relative sliding,

carrying the fibers with it.

(b) Torsion of Cylinder

We consider the torsion of a fiber reinforced cylinder in which the

fibers are parallel to the axis, fig. 4.11. If the cylinder were elastic homo-

geneous and transversely isotropic, with material axis of symmetry parallel

to the cylinder axis then

0- T

GAI'

where

@ - angle of twist per unit axial length

T - torque

G A - axial shear modulus

I' - IA(X22 +x32 +x 2 ?x 3 x 3 _ ) dx 2 dx 3
x 2

(4.6.14)

q0 - torsion function

If the cylinder is viscoelastic and subjected to torque T(t), then

by the correspondence principle

^

T (p),%

=
,%

PGA(P) I'

(4.6.1s)
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Let

T(t) =T H(t) (4.6.16)
o

then

T

(p) = __o_o (4.6.17)
P

Introducing (4.6.17) into (4.6.15), using (4.6.8b) and inverting we have

T

@(t)- i° gA(t) (4.6.18)

If instead of (4.6.16)

T(t) =T f(t)
o

then from (4.6.18) and superposition

t
T

(4.6.19)

Suppose that the cylinder is fiber reinforced, with axial shear compliance

gA(t). Then by the first approximation (4.6.18-19) simply becomes

T
o *

@(t) = TgA (t) (a)

(4.6.20)

t
T

0 (t) = i-_- f (T) dT (b)
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(c) General comments on viscoelastic fiber reinforced structures under static loads

The results obtained in this chapter, in conjunction with the results of

chap. 4.3,indicate an approximate rule for analysis of viscoelastic fiber rein-

forced structures which are subjected to loads which are constant in time:

The solution for an elastic structure of same geometry and under the same loads

is first obtained. To obtain the LT of solution for the viscoelastic structure

effective elastic moduli are replaced by effective TD moduli. Any of the group

of EEM en* e * e * e * *
' ' ek*' EA ' _A may be replaced by the initial values n (o)

(o), k (o), EA(O), _;A(O) because of their small time variation. Any of the group

• e * e * e *

eG A , G T, E T , v T should be replaced by the corresponding effective TD

modulus of the group pG A , p G T, pE T , _0T(p).

Once the solution for loads constant in time is known the problem of

variable loads is solved by an hereditary superposition integral.

4.6.2 Torsional Forced Vibrations of Fiber Reinforced Cylinder

As has been mentioned in par. 4.5.1 vibration problems of two phase

composites may be treated on the basis of a first approximation theory in

terms of effective complex moduli and effective densities. Since this subject

is still in the development stage, we treat the present example by classical

vibration theory of homogeneous cylinders, with complex moduli and average density,

respectively. It is not clear to what extent the analysis is meaningful.
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The cylinder shown in fig. 4.6.2 is built in at x I = x = 0 and is sub-

jected to a sinusoidal forcing torque at the end x = _ . If the cylinder is

elastic homogeneous transversely isotropic with axis of material symmetry in x

direction then the governing differentialequation of the problem is

= 2 (4.6.21)
5x c 5t2

where

t_(x,t) - angle of twist

2 GAI'
pl

where I' is given by (4.6.14) and

I - polar moment of inertia of section

p - density

The boundary conditions are

(o,t)= 0 (a)

GAI' 5@Sx(_'t)=To e&wt (b)

where the right side of (4.6.23) is the forcing torque of frequency _.

(4.6.22)

The solution of (4.6.21) with (4.6.23) is (see e.g. [4.15J )

(4.6.23)
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cT sin( wx )
&wt

_ (x,t) - o c e (4.6.24)

WGA cos (-_-)

Suppose the cylinder is homogeneous viscoelastic transversely

isotropic with complex axial shear modulus GA(&W) . In view of the classical

correspondence principle of par. 4.5.3 the solution can then be written down

on the basis of (4.6.24) in the following fashion

"_ l,wt
_(x,t) = @(x) e (a)

sin (WX )

$(x)- cT° c (b) (4.6.25)

®GA cos

_'2 %1'
C --

pl
(c)

The forcing torques

T = T cos wt
0

T = T sin wt
0

(a)

(b)

(4.6.26)

produce the solutions

t_ (x,t) = i_ [ @ (x,t)]
C

(x,t) = Im [ @(x,t) ]
S

(a)

(b)

(4.6.27)

respectively.
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!_ow for a fiber reinforced cylindert_ A in (4.6.25) is replaced by GA
and p is replaced by the average density "_ . The last replacement, in

particular, cannot be correct. As mentioned in chapter 3.9 the effective

density is not the average density and in the present case it is to be expected

that the effective density will be a complex number. Proceeding nevertheless

with the simple assumptions adopted here we find after straightforward

calculations (for details see [4.16]) that for a cosine forcing torque (4.7.27a)

the angle of twist at the extremity x = £ is given by

c T h 2(Z,t) - o sin 2 2a+ sin 2B cos(wt - 6/2-_) (4.6.28)
*R

c wG A (w)I' cos 2cL +cosh 2B

where

* R # l+v2
G A (w) = G (w) l-v---_- (a)

*R
G (oJ) I'*2 A

c = (b)

"FI

w_
(_- . cos 6/2 (c)

C

. sin 6/2 (d)
C
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I
G
1

tan 6= --
R

G
i

matrix shear loss tangent (e)

2
tan 6 < < I (f)

sinh2B
tan _ - (g)

sin Z

It has here been assumed that the fibers are rigid and that the FRM

is described by the composite cyliaderassemblage; hence the form (a) for

*R
G
A

It is seen that the factor multiplying the cosi,:_e in (4.6.28) is the

amplitude and ¢ + _/2 in the cosine argument is the phase lag.

A plot of the amplitude of _ , as given by (4.6.28), as a function of
C

frequency • , is shown i_ fig. 4.6.3. Also shown is Amp

torsional vibrations of an elastic fiber reinforced cylinder.

£ = 5.0 ft.

d=4.0 in.

F=3.0

GIR(w) = GIR(o) (i +

diameter of circular section

density relative to water

1
loglo cu)T

in the case of
C

The data used are:

G?(o) = 0.5 x 106 psi

tan 6 = O. 1

= 0.4 v2V 1
=0.6
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In the elastic a::alysis tt has been ass]reed that oiR(o) is the elastic matrix

shear modulds.

The elastic amplitude diagram shows typical resoL]ances. It is seen

that for the viscoelastic cyliader the resonances are quickly damped out.

Other cases of vibration a_Lalysis of fiber reinforced viscoelastic

stractures have been analyzed in L4.16].
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5. CONDUCTION, DIELECTRICS AND MAGNETICS
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INTR©DUCTION

In the present part, we shall be concerned with steady state

thermal and electrical conduction and magnetic and dielectric behavior

of FRM. The reason for grouping these subjects together is that the

problems involved are mathematically completely analogous, as will be

shown below.

The structure of the theory to be developed in this part is identical

to the structure of the theory for elastic behavior developed in part 3.

Moreover, the problems to be solved are much simpler than the elastic

problems since the governing equations in the present physical subjects

are much simpler than elasticity equations.

At a certain stage of the development, it will be shown that the

problems to be solved here are mathematically analogous to problems which

have arisen in elastic axial shearing theory and this analogy will enable

us to immediately convert axial shearing results into corresponding results

for the present subject.
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5.1 VECTORIAL AVERAGE THEOREMS

5.1.1 Average Gradient or Intensity Theorem

The vectorial average theorems to be derived in this chapter are

the vector analogues of the tensorial average theorems which were given

in chap. 3.1. The theorems are of general mathematical nature and do

not presuppose any specific physical behavior.

Consider a two-phase body of volume V and with external surface

S. The phase volumes are V 1 and V 2 occupying regions R 1 and R2,

respectively, and the phase interfaces are denoted S
12"

Define a continuous scalar function _, called the potential

which has the following properties

o
_(s)= _ (a)

(i)

I '° _ I RI
= in

_ (Z)(x) Rz

(1) (z)
_ (Slz)= _ (slz)

(b) (5. I.i)

(c)

The gradient V_is given by
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(v_) i = _' t (5.1.2)

For reasons of convenience we shall define an intensity vector H as the

negative of the gradient (5.1.2), thus

(5.1.3)

Hi® = - _'i

The average of the intensity is defined by

_.H= _ H dV - V v%o dV

V V

/ /H 1 1
i V H.dV1 - V e0, i dV

V V

The average intensity or gradient theorem asserts that

(5.I.4)

- i [ o
__H- V .i e ndS

S

-- 1 I" o
I'J'. --
I V _0n. dS7 I

S

The proof is immediate:

(5.i.5)

The volume integral in (5.1.3) is converted to

two phase region surface integrals by means of the divergence theorem.

The surface integrals on the interface cancel because of (5.1.Ic) and the

reversal of the interface normal. Then (5.1.5) follows at once.

From (5.1.5) we obtain the following special result

Corollary

If

cp(S) = Hi°xi - H ° ]
= ' X_. (5.I. 6)
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where H ° are arbitrary constants and _.H° is a constant vector with cora-
l

ponents H ° then

-- 0
H =H

H. = H °
1 1

(5.1. v)

Proof:

Insert (5.1.6) into (5.1.5)to obtain

H 1 o
Hj x.] n.t dS

8

Now by the divergence theorem

iH°f dS = IH° fx .dV =_-H. 6V=1 o H.OV j xjni V j j,1 ] ij 1

S V

which proves the corollary.

Evidently, the theorems proved hold for any number of phases and

they are also easily generalized to time dependent fields to hold for

intensities and rates of intensity, as has been done for strain rates

in par. 3.1.1.

By comparison with par. 3.1.1, it is noted that _ is the scalar

analogue of the displacement vector u. and the intensity H (or the negative
1 i

of the gradient v_0) is the vector analogue of the strain tensor e...
1]
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5.1.2 Average Flux Theorem

We define a vector D with components D. which has the following
1

properties

--nD(S) = _D • _n = Di(S)nl-- = D°n

D_ l) x_ R 1:t 'n/
D. (x_)1 Di(2) x(__) R2

v . D (1) = D (1). . = 0 in R 1
-- I,I

V • D (2) = D (2) = 0 in
. R 2i,I

(a)

(b)

(c)

D(1)(Sn 12) = D(2)n (S12 ) (d)

(5.I.8)

The vector D is called the flux vector.

Equ. (5.1.8a) states that the normal component of __Dis prescribed

on S, (5.1.8d) expresses continuity of the normal component at the

phase interface and (5.1.8c) states that the divergence of D vanishes

everywhere.

The average flux vector D is defined by

/'--1
J# (_ dVD= V-
V

-Di= V
V

(5.l.9)
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The average flux vector theorem asserts that

_ = D ,n) x dS = _- _

S S

5.1 = _-f D n xaS]] i = --vlf °xidSD

S S

(5.1.I0)

Proof:

We use the identity

x i = D.(Dj) ,j 1

which is true for any vector satisfying (5.1.8c). Substituting this

expression for D. into (5.1.9) we have
I

D.1 = 1V iv (Djxi)' ]'dV

We convert to surface integrals on the surfaces S I and S 2, enclosing

V 1 and V 2. Then the integrals on the interface S12 cancel because of

(5.1.8d). (The same problem with the normal arises here as in the

proof of (3.9.29) and is resolved in the same way by proper consideration

of the sign convention of the normal.) The result (5.1.10) then follows

at once.

From (5.1.10) we have the following special result

Corollary

If

(5.1.ll)
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0
where D is a constant vector with constant components D ° , then

i

D= D °

D = D °
(5.I.12)

Proof:

Insert (5.1.11) into (5.1.I0) to obtain

i /Di V Dj 1 ]
= -- x.n.dS

S

The surface integral which appears here is equal to 6..V as has been

shown in the proof of (5.1.7). So (5.1.12) follows at once.

Again the theorems proven are easily extended to bodies with any

number of phases and also to flux vector rates in the case of time

de pendence.

By comparison with par. 3.1.2 it is noted that the average flux

theorems are the vector analogues of the average stress theorems. The

flux vector takes the place of the stress tensor, the normal flux component

takes the place of the traction and vanishing of the divergence is

analogous to stress equilibrium without body forces.

5.1.3 Average Virtual Work Theorems

Suppose that in the two-phase body there is defined a scalar function
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q0which has the properties (5.1.I) and a flux vector D which has the

properties (5.1.8). The integral

Q =/ D.H. dV = - / Di_,i i i dv

V V

(5.l.13)

is defined as tl%e virtual work. It should be emphasized that the vectors

D and H__are at present unrelated and Q has no physical meaning.

The virtual work theorem asserts that

Q j i i ,, Dn%°
dS

V S

To prove this theorem we note that at any point

(S.l.t4)

Dill" = - = - Di,i _° (Di%°)'iI Di%°'i (Di%°)'i + = -

since Di, i vanishes according to (5.1.8c). We introduce this result

into the left integral in (5.1.4), integrate separately over the phase

volumes V 1 and V2,and convert the volume integrals into surface

integrals by use of the divergence theorem. We then have

/ /Q = D n %0dS - D i n %O dSi i i

S 1 S2

The surface integrals on the interface cancel and the only remaining

contribution is from the external surface S which gives the surface

integral in (5.1.14) and thus proves the theorem.

Obviously, a similar result holds for any number of phases.
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We now consider theorem (5.1.4) for the cases when either one

of (5.1.6) or (5.1.11) is given on the boundary. We first split D and

H at any point into average and deviation. Thus

D.(x_)l = I_.1 + D._(x_)

m

Hi__) = H. + H'(xJi i

(S.l.lS)

Cons equent ly,

Q = D.H.VIi + /DIH"dVzi

V

Evidently, it is always possible to express H. in the form
1

(5.1.16)

Hi = (H--jxj)'i

Because of (5.1.3) it then follows that

HI (J = (a)

_'(x) = _(x_) + H x (b)
Jj

(5.1.17)

Since D in (5.1.15a) is a constant vector it trivially satisfies
1

both (5.1.8c) and (5.1.8d). Since D.x(_ also satisfies these conditions
1

the same follows for D'.(x_). Thus
1

D_
1,i

D'
n

= 0 (a)

continuous on S
12 (b)

(s.z.z8)
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In view of (5.1.17a) and (5.1.18) the theorem of virtual work applies to

the second integral in (5.1.16)

D'.HI dV - / D'nq0'dS
I i

V " V

(s. 1.19)

The development up to this point is perfectly general.

consider specifically the boundary conditions (5.1.6) and (5.1.11).

the first case we have from (5.1.7) and (5.1.17b) that

We now

In

_'(s) = 0

Consequently, (5.1.19) vanishes and only the first term remains in the

right side of (5.1.16).

If (5.1.11) holds it follows from (5.1.12) and (5.1.15) that

D' (S) = 0
n

and again the integral (5.1.19) vanishes. We may thus summarize

• -- 0 I

|

r ( D.H .V (a)I;D.HdV = I_HV = _ 1 1

J _i i i _ _O_vD . I (b)
V 1 1 :

where (5.1.20a) refers to (5.1.6) and (5.1.20b) refers to (5.1.11).

(5.1.2 O)
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5.2 STEADY STATE BOUNDARY VALUE PROBLEMS

5.2.1 Formulation

Suppose that the intensity H and the flux _D, defined in chap. 3.1,

are connected by the general linear relation

D : =- (a)
i PijHj uij _°' j

_.. = _,. (b)
i] it

(5.2 .i)

where u.. may be space dependent.
l]

Equs. (5.2.1) may be regarded as a

constitutive relation. The inverse of (5.2.1a) may be written as

H = (a)
i _ijDj

{ikUkj = 6ij (b)

(5.2.2)

It follows from (5.2.16) and (5.2.2b) that

= (5.2.3)
gij gji

It is seen that Ui j is the analogue of the elastic moduli tensor Cijkl,

[tj is the analogue of the elastic compliance tensor Sijkl and (5.2.1a),

(5.2.2a) are analogues of Hooke's law.

Inserting the extreme right of (5.2.1a) into the zero divergence
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condition (5.1.8c) we obtain the differential equation

(U.._,.),. = 0
t] ] 1

(s.2.4)

If u,. are constant, (5.2.4) reduces to
l]

Uij_°'ij = 0 (5.2.5)

In an orthotropic material

0 00]Lt%j]= l° u2 (a)

0 0 U3

[" ° i][ _j ] = 0 _2 (b) (5.2.6)

0 0 "_3

1 _ 1 1 (c)
_l = 71 _2 _2 _3= u_

Since _. is a symmetric tensor it can always be brought into the form
1]

(5.2.6a) by referring it to its principal axes.

If the material is transversely isotropic,with x 1 axis of symmetry t

we have

i (a)
"ul = UA ' _I -= _A- UA

_2 = u3 = _T'
i (b)

_'2 : {3 : _T- UT

(5.2.7)
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If the material is completely isotropic we have

Ul = u2 = _3 = U

and consequently

uij= _%j (a)

1
_.. = _6.. = -- 6.. (b)
U i] _ l]

(5.2.8)

Then (5.2.5) reduces to

v2 = 0 (s.z 9)
<0= _0 ii

which is the Laplace equation.

Boundary conditions to be considered are

o
_0= _ on S (a)

_0

D n D °= n on SD (b)

(5.2. to)

which imply that the potential %0 is prescribed on part of the external

boundary and the normal flux component on the remaining part of the

boundary. Since the formulation is in terms of %0, (5.2.10b) should be

expressed in terms of this quantity. It is easily seen that

D = - ui:<0,.n.j (5.2.1l)n ] t

For a homogeneous or continuously non-homogeneous body (5.2.5)
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or (5.2.4) subject to (5.2.10) define a unique potential function _ if

U.. is positive definite. In the event that S vanishes, i.e. (5.2.10b)

is prescribed over the entire boundary, _0is unique except for an arbitrary

additive constant.

If the body is two-phase or multiphase the formulation has to be

modified. To be specific we consider two homogeneous phases. Then

u!l ) in R l
i]

Uij : (2)

U ij in R2

(5.2.12)

The field equations (5.2.5) become

(1) (1) _ 0 in R 1 (a)uii  'ii -

(2) (2)
U ij _'ij = 0 in R2 (b)

(5.2.13)

The boundary conditions (5.2.10) with (5.2.11) may be left as they stand,

with the understanding that the quantities in them must be given indices

l or 2 in the boundary regions which belong to the phases l or 2.

At the phase interfaces there are now imposed the continuity

conditions

(i) (2) (a)
_ = _0 on S (5.2.14)

12

D(1) = D (2) (b)
n n

the last of which may be written in view of (5.2.11) as
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(i) (I) ni u(2) !2j)uij j = ij %o ni (5.2.15)

_e _o_em_us _o=_e_ _o _ _ _ue so_u_o__ J!!
lj

and U(2!" are positive definite. There is of course no difficulty whatsoever
1j

to generalize the formulation (5.2.10), (5.2.13-15) to bodies with any

number of phases.

The mathematical formulation given above applies to the physical

subjects of thermal and electrical conduction, electrostatics and magneto-

statics. We list below the physical interpretation of the various quantities

defined.

Phystcal Subject

Thermal conduction

Electric conduction

Electrostatics

Magnetostat ics

%o

temperature

electric potential

electric potential

magnetic potential

H = - v%O

temperature gradient

electric field intensity

electric field intensity

magnetic field intensity

heat conduct ivities

electric conductivities

dielectric constants,

penn itt ivit ie s

magnetic permeabilities

heat flux

current density

electric induction,

electric displacement

magnetic induction

res istivities

res [stivfttes
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5.2.2 Elementary Solutions for Homoqeneous Bodies of Arbitrary. Shape.

Homoqeneous Boundary Conditions

We now derive solutions analogous to the ones derived in par.

3.2.2 for elastic bodies.

Consider a homogeneous body with conductivities u.. and let
i]

it first be subjected to the boundary condition (5.1.6) which is given

again below

O
®(s) = - H x, (5.z.16)

i 1

We try a potential solution of the form

O
_e_) = - H x

l 1

It is seen that this function trivially satisfies (5.2.5). It obviously

satisfies (5.2.16) and it is therefore the correct solution by the

uniqueness theorem. Consequently, by (5.1.13)and (5.2.1)

H, x_ = H °. (a)
I I

D.(:x_.) = u..H? (b)
z U ]

(5.2. t7)

which are homogeneous vector fields. Therefore (5.2.16) is called:

homogeneous potential boundary condition.
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Now ]et the boundary condition (5.1.11) be imposed, which is

given again below

D (S) = - U. _0 n = DOn
n i] ,] I i I

(5.2.18)

We try a solution of the form

o

__) = - _ijDixi + const
(5.2.19)

where _j are defined by (5.2.2b). Since (5.2.19) is a linear function

it satisfies (5.2.5) trivially. It follows from (5.2.19), (5.1.3), (5.2.1)

and (5.2.2b) that

H. _ = _..D ° (a)
I t] l

D. = D °. (b)
t 1

(5.2.2 o)

Forming the normal component of (5.2.20b) it is seen that (5.2.18)

is satisfied. Therefore (5.2.19) is the solution and (5.2.20) are the

homogeneous intensity and flux fields within the body. Consequently,

(5.2.18) is called: Homoqeneous flux boundary condition.
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5.3 EFFECTIVE CONDUCTIVITIES OF GENERAL COMPOSITES

5.3.1 Heteroqeneous Bodies with Homoqeneous Boundary Conditions

In the present chapter effective conductiv[ties (EC) will be defined

and discussed for general SH composite materials. We shall use the

following expressions

_0 - potential

__H - intensity

D - flux

u., - conductivities
ij

_ij - resistivities

with the understanding that the theory applies to the subjects of thermal

and electrical conduction, electrostatics and magnetostatics.

Let a composite body be subjected to the homogeneous potential

boundary condition (5.2.16), which is here written out in detail

O O O

%0(S) = - (HlX 1 + H2x 2 + H3x 3) (5.3.1)

Because of the linearity of the governing equations the solution may be

regarded as the sum of three different solutions, each of which is defined

by the application of a single term of the right side of (5.3.l) on the

boundary. Consider the case when
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_(s)= - x
1

and denote the corresponding field solution by<0(1)__). If instead there is

0

imposed on the boundary o(8) = - Hix 1 then by linearity the solution is

O

HI_D(1)(__). Defining, similarly, unit solutions _0(2)(y__) and _0(3) _ eorres-

ponding to _(S) = - x 2, _(S) = - x 3, respectively, the solution for

the general case (5.3.1) can be written, by superpositton, in the form

0 0 0 0

<0(Z_): Hl<O(l) x(__)+ H2_0(2) x(z_)+ H3W(3I(Z_) = Hk<O(kl(Z-)
(5.3.2)

It follows from (5.3.2), (5.1.3) and (5.2.1a) that the intensity and flux

at any point have the forms

H _ : - H ° (a)
i _'°(k),i

- H ° (b)
Dt x(z_): Uik(_-) j_(j),k

(5.3.3)

where Uik(X_) denotes the space variable (piecewtse constant) conductivities

of the heterogeneous body. Consequently the average of (5.3.3b) can be

written in the form

D. = u*.H ° (5.3.4)
t] j

where

U*._] = - UikX(_.)cp(j),k (5.3.5)
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In view of the average gradient or intensity theorem (5.1.6-7) it is seen

that (5.3.4) can also be written in the form

__ Di = u_jHj i (5.3.6)

There is thus a linear relation between the average flux and intensity

components.

Nextlthe homogeneous flux boundary condition (5.2.16) is applied

to the boundary. It follows by similar linearity arguments that

= D °
H i _j j (5.3.7)

where <*, are some averages of field quantities. In the present case
l]

0

Dj are the flux averages because of theorem (5.1.11-12). Therefore

(5.3.7) can be written in the form

H._ = _ tjDj (5.3.8)

It is to be noted that (5.3.6) and (5.3.8) are general results for

any body, homogeneous or heterogeneous, under homogeneous boundary

conditions. If the body is homogeneous (5.3.6) and (5.3.8) merely reduce

to the results (5.2.15b), (5.2.23a),respectively.

It is easily shown that _* and _*. are symmetric tensors if
1j tj

U.. is symmetric. To see this we average (5.2.1a) and equate to
l]

(5.3.6). Thus
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p_jHj = utjHj

and also

U*..H. = u..H.
]i ] ]I ]

It is seen that the right sides of these equations are equal because of

Pij = Uj i" Therefore

- u*,) H, = 0(u]j J

But H. = H °. is an arbitrary vector and therefore
] ]

U*, = u* (5.3.9)
U j i

* symmetry is evidently analogous.The proof for _ij

We now consider the volume integral

Thus

(5.3.10)

1 / Di __)Hi x(x_)dVL= T

V

taken over a heterogeneous body.

(5.3. Ii)

In view of (5.2.1-2) this integral

can be expressed the the alternative forms

1 /uijH,H dVL:T ' t j

V

1 f gijDiDjdVL= T

V

(5.3.12)
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The physical interpretation of (5.3.11-12) is rate of entropy pzoduction

for thermal conduction, half the electric power for electric conduction,

the electrostatic energy for electrostatics and the magnetostatic energy

for magnetostatics. (There may be a different factor before the integral

according to the physical units which are used). To be specific we

shall refer to (5.3.11) simply as the energy integral This integral is

obviously the analogue of the elastic energy (strain or stress energy).

From the average theorem of virtual work, it follows at once that

for homogeneous boundary conditions, (5.3.11) is rigorously given by

L = _- D.H.VIL (5.3.13)

If the boundary condition is (5.1.6) it follows from (5.1.20a) and (5.3.4)

that

l 0 0

L = _- u_jHiHjV
(5.3.14)

If the boundary condition is (5.1.11) it follows from (5.1.20b) and (5.3.7)

that

[--........i.............o-_o.....1
=--_*DDV

2 ij i j I
........................................ J

(5.3.]5)

5.3.2 Statistically Homoqeneous Composites

The interpretation of the general results (5.3.4, (5.3.6-8) and
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(5.3.14-15) for SH composites is exactly as in elasticity, par. 3.3.2.

We first state the fundamental postulate of theory of conductivity of

heterogeneous media: The intensity and flux fields in a very large

SH body, subjected to homogeneous boundary conditions are SH, except

in a narrow bcundary layer near the external surface. It follows that

the body averages which enter into the results obtained in par. 5.3.1

are now also RVE averages. Hence (5.3.6) and (5.3.8) become the effective

constitutive relations, and u*t] are the effective conductivities and "<*ji are

the effective reststivities. By the same arguments as given in par. 3.3.2

these tensors are reciprocal for a SH body. Thus

u* _*,j = 6ik K tj
(s.3.16)

The effective physical constants U*.jt and [*"1] may also, alterna-

tively and equivalently, be defined by the energy expressions (5.3.14-15)

For a SH body these expressions can also be interpreted as energy

densities per unit volume RVE. We write

_ 1 u. H H ' '
MH 2 lj i ] l

- IMD 2 g'_j D.t D.]

(5.3.17)

These are the analogues of elastic strain energy and stress energy densities,

respectively.
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5.3.3 Effective Physical Constants in Terms of Phase Averaqes

We shall now derive expressions for U*.. or _*. of a two-phase
t} t]

body in terms of averages over a single phase. We decompose intensity

and flux averages as follows:

m --

Hi = H(1)i Vl + H(2)i v2 (a)

_. = _(,l) vl + _(2) v2 (b)
t l i

(5.3.18)

where the averages in the right sides of (5.3.18) are taken over phase

volumes. For homogeneous phases we have

5(})=J}! (a>
t i] ]

B(}):j2,> (b)
t t] ]

l l] ]

(5.3.19)

(5.3.2, O)

Consider the equations (5.3.6), (5.3.18) and (5.3.19). We

eliminate from these the quantities Di' --(1),ni D(iZ ) and H (1)i " This leaves

the equation

u*.. H. : P!I.)H, + ' (2) (I))H(2)v2 (5 3 21)t] ] t} } tU ij - U ij j " "

If the body is subjected to the homogeneous potential boundary condition
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u o
(5.2.16) then H. = H..

I I

influence relation

In this event we can also write the linear

-(2) .(2) o
I-I-. = /&.. H.
t t] )

.(2)
where A.. is an intensity average influence tensor for phase 2.

i]

(5.3.22) into (5.3.21) we obtain

(5.3.22)

Inserting

_. _ [_(_)+ (_(2) (_k_ A(2)J H° --0H ik - I/ kj j

Since H ° is an arbitrary vector, each coefficient of H ° must vanish
J ]

separately. Consequently

_* = u(')+ (J_k)- ,,(_k)) A(2)v2 (5.3 23)
ij ij kj

Evidently (5.3.23) remains valid if 1 and 2 are interchanged.

The same procedure may be repeated for fluxes and resistivities.

The counterpart of (5.3.21) is then

_ij Dj = _ij j ] (5.3.24)

For homogeneous flux boundary conditions (5.2.18) we have

_(2)=. B(2)Do.. . (5.3.25)
l i] ]

where B"2"().is a flux average influence tensor. Then (5.3.24) can be
U

brought into the form

(1) + . (2) (lk_ B(2) v2_j = _ij (_ik - _ kj (5.3.26)
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5.4 EFFECTIVE CONSTITUTIVE RELATIONS OF FIBER REINFORCED MATERIALS

5.4.1 Symmetry Reductions

We consider the implications of various symmetry properties for the

general constitutive relations (5.3,6) and (5.3.8). Suppose that the

material is fibrous and SH. The system of axes is as usual x 1 in

generator direction of cylindrical phase regions or fibers, and x 2, x 3

in a transverse plane. It is clear that the x 2 x 3 plane is a plane of

symmetry for the constitutive relations if it is also a plane of constitu-

tive symmetry for the phase materials. From this it follows easily that

To see this suppose that there is only an average intensity component

H 1 in x 1 direction while H 2 and H 3 vanish. In this event (5.3.6) assumes

the form

B1 = _*il _I (a)

D2 = _*i2 H1 (b)

D 3 = U=_3 H I (c)

(5.4.2)
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Let the coordinate system be rotated in the following fashion:

the x 2 axis is a fixed axis of rotation while x I and x 3 are rotated

counter by I ! •

clockwise 180 ° to assume positions x I and x 3 The direction

cosines of the rotation are

cos (x{,xI)= _ii= - I

cos (x_, x2) = _22 = I

' _'3cos (x 3, x 3) = 3 = - 1

and the rest of the direction cosines vanish. By the laws of vector

m

transformation the vector D in (5.4.2) transforms into a vector D' with

the components

[D_,] = [- 5l , 52, - 53] (5.4 3)

in the new system, while the axial vector [H] = [H 1, 0, 0] in (5,4.2)

transforms into

[H_'] = [-H I , 0, 0 ]
(5.4.4)

Since x 2 x 3 is a plane of symmetry the components of _' and H_' must

be related just as (5.4.2) It follows in particular from (5 4.3-4) and

(5.4.2b) that

52 :-  l'2
(5.4.5)
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Comparison of (5.4 2b) and (5 4.5) reveals a contradiction which can

only be resolved by letting _2 vanish.

We may similarly perform a 180 ° rotation of x 1 and x 2 axes

around the x 3 axis. This makes _3 vanish by the same kind of

argument. This completes the proof of (5.4 [).

Consequently for any SH fibrous material

DI : i HI (a)

D2 = U'22 H2 + _'23 (b) (5.4.6)

D3 : _'23 H2 + U'33 H3 (c)

Obviously the reciprocal relation (5.3.8) will also be of the same form

as (5.4.6).

The constitutive relations (5.4.6) are physically plausible. They

imply that for a fibrous material an intensity component in x 1 direction

does not induce f!uxes in the transverse directions. There is thus no

"Poisson" effect in the present case.

The relations (5.4.6) may be further reduced by referring the two

dimensional Z* tensor (c_,_ = 2,3) in (5 4 6b,c) to its principal axes
C_ " " "

In this event there will only remain the principal conductivities p* and
2

p_. This, however, is not very helpful since the values of p* must

be known in order to find the principal axes, and these are precisely

the quantities we wish to determine.
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Next, suppose that the composite is geometrically orthotropic

with respect to the x ! x 2 x 3 system and that the phase materials are

also orthotropic with respect to the same system of axes. Then the

composite is macroscopically orthotropic and (5.4.6) reduce to

51 = _* HI (a)l

D3 = tJ'*3 H'3 (c)

(5 4.7)

where

= = * = * (d)
_ U_ I _ U 22 _ P 33

If the composite is macroscopically transversely isotropic then

to which we adjoin the notation

U_ = H A

Then (5.4.7) simplifies to

D3 = I-J-_ H'3 (c)

(5.4 8)
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Examples of orthotropic and transversely isotropic FRM have been

discussed in chaps, 2.2 and3.4. It is easily seen that in the present

physical subject a geometrically square symmetric material is also

transversely isotropic with respect to constitutive relations.

This completes the discussion of symmetry reduction of the macro-

scopic constitutive relations. The present simple situation should be

contrasted with the complexities of elastic stress-strain relations,

chap. 3.4.

5.4.2 Axial Conductivity

We proceed to establish a general formula for the axial conductivity

_/_I of fibrous materials, of any transverse geometry. Let a cylindrical

composite specimen be subjected to the homogeneous potential boundary

condition

0

C0(S) = - H I x I

Then by the average intensity theorem (5.1.7), and (5.4.1)

(5.4.9)

o (5 4. lO)DI = U_I HI



562

The general formulation of the conduction problem of a two-phase body

is contained in equs. (5.2.10), (5.2.13-15). We assume that for the

present problem

_o(1) (x__)= _(2) (x) = - H_ x 1 (5.4. U)

It is seen that (5.4,H) trivia!ly satisfies (5.4.9), (5.2.13) and (5.2.14a)

Thus the on]y remaining condition is continuity of normal flux component

(5.2.14b) or (5.2.15) at the interfaces.

We recall that the phase interfaces are here cylindrical and

consequently the interface normal _n has the form

[n] = [0, n 2, n3]

Furthermore, we have from (5.4.11)

[v_o(1)] = [v_ (2)] = [H_, 0, 0]

Therefore,(5.2.15) assumes the form

p(1) n = p(2)
czl _ c_l n c_= 2,3

CS

This condition is evidently satisfied when

(i) pt(2) 0
_12 = !2 =

(ll)3 (2) 0= Ul3 =

(5.4.12)
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i.e. when the phase constitutive relations have the very general form

(5.4.6). (Strictly speaking, the equality to zero in (5.4.!2) is not

even necessary.) Consequently (5.4.11) is indeed the potential for a

very general class of phases.

Now from (5.2.1), (5.4.11) and (5.4.12)

D1 = (_(i11)Vl + _(2) v 2) H?

where v 1, v 2 are the volume fractions. Comparing this to (5.4.10)

we have

(I)Vl + _ )v2_/_I = Pll = _II
(5.4.13)

For orthotropic, transversely isotropic or isotropic phases (5.4.13)

reduces to

r
_ 1

(a)

(b)

(c)

(5.4.14)

re spe ctively.

* is given by the reciprocal ofEvidently the axial resistivity _II

(5.4.13), in view of the form of (5.4.1a).
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The present simple and general result is the analogue of the

results (3.5.55), (3.5.60a) for the axial Young' s modulus of a fibrous

material in the case of equal phase Poisson's ratios.
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5.5 TRANSVERSE CONDUCTION

5.5.1 Formulation and Axial Shearing-Transverse Conduction Analogy

To investigate transverse conduction of a fibrous or fiber reinforced

material we impose upon a cylindrical specimen, fig. 2. i. I, the homogeneous

potential boundary condition

2 o x3 ) (5 5 l)90(S) =- (H x 2 + H3 " "

It is assumed that the potential fl0(x_) is not a function of x I.

(i) (i)
%0 (x_) = %0 (x2 ,x3) (a)

Thus

(2)(x) _(2)= (x2 ,x3) (b)

Consequently the boundary condition (5.5. i) may be written

o x3)90(C) =- (H2 x 2 + H 3 (a)

o x3 )%0(0,x2,x 3) = <o (H,x2,x 3) = - (H 2 x 2 + H 3 (b)

(5.5.2)

(5.5.3)

where C is the contour of any transverse section. Thus (5.5.3a) is a

boundary condition for the curved cylinder surface and (5.5.3b) - for the

terminal sections.

Let it be assumed that the two phases are transversely isotropic with

axes of symmetry in x I direction. In this event, (see (5.2.7)) the only non-

vanishing phase conductivities are
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(i) (i)
_/II=UA ,

(i) (i) (i)
U22 =U33 =U T

(2) (2) (2) (2) (2)
U ii = U A ' _/22 = u33 = UT

(5.5.4)

The phase potentials (5.5.3) must satisfy equations (5.2.13) .

(5.5.2) and (5.5.4) we obtain simply

2 (1)
v qo =0 inR (a)

1

In view of

v2 (2)
%0 = 0 in R2 (b) (5.5.5)

172- _2 _2+ _ (c)
2 2

_x 2 _ x 3

The continuity condition (5.2.14a) is

(1) (2)
_0 = _ on 012

where 012 is a transverse section through the phase interfaces.

In view of (5.5.2), (5.5.4),and the fact that the interface normal

has no component in x I direction, (5.2.14b) reduces to

_(i) (_(_)2n2 + (i) (2) (_0(2) n2 + (2)T ,3 n3) = u T ,2 %0,3 n3) on 012

(5.5.6)

(5.5.7)

It is seen that the parentheses in (5.5.7) contain normal derivatives.

We adopt for simplicity the notation

(1)
u T =u I (a)

(s.5.8)(2)
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Consequently (5.5.7) may be written in the form

_ (i) ___(z)
- on C12 (5.5.9)_tl _n U2 Bn

The problem formulated by (5.5.2a), (5.5.5), (5.5.6) and (5.5.9) is

a plane potential theory problem for a plane two-phase region. It has a

unique solution if u 1 and u 2 in (5.5.8) are positive. (As they certainly

are for physical reasons.)

It is seen that the boundary conditions (5.5.3b) cannot be satisfied

by the present solution. However, for a cylinder which is very long in

comparison to typical cross section dimension this is of no consequence.

We shall now show that there is complete mathematical analogy

between the axial shearing formulation , par. 3.5.1 and the present transverse

conduction formulation. We observe that the governing differential equations

(3.5.39), (3.5.41) and (5.5.6) , (5.5.8) , and the boundary conditions

(3.5.37) and (5.5.3a) have the same form. Comparison of all of these

shows the mathematical equivalence of the following quantities

G+---_ U i.e. G_--_U T

0 0
2e _--_ - H e =2,3

(5.5.10)

relations reveals the further equivalence

Comparison of (3.5.33b,c) and (3.5.34b,c) with the conduction constitutive
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2ei (x 2'x 3) _ - H (x2,x 3) =_ (a)0L ,0_

c12 (x2,x3) _ Da(x2,x 3) (b)

(s.s.11)

The scheme (5.5.10-11) expresses the mathematical equivalence of

the axial shearing and transverse conduction problems. If a solution for

one of them is available the solution for the other can be immediately

written down, We shall call this analogy the axial shearing-transverse

conduction ana logy.

This analogy has far reaching consequences for the computation and

bounding of transverse conductivities of FRM. The effective axial shear

modulus G A is defined by

oI = 2G A e (s.s.12)

while the effective transverse conductivity U T is defined by

Z) = _T H (5.5 13)(I, CL

It is seen that (5.5.12-13) are mathematically analogous in view of (5.5.10-11).

,

Now G A is a function of phase geometry and phase shear moduli only. Conse-

,

quently _T is the same function of phase geometry and phase conductivities.

Thus

G A:F (G1, G 2, [g} )

_tT =F (_1' U2 ' {g} )

(5.5.14)
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This permits us to write down effective transverse conductivity

expressions simply by replacement of phase shear moduli by transverse phase

conductivities lfor transversely isotropic phases) in effective axial shear

modulus expressions.

It is not difficult to realize that the same analogy is valid not only

for exact expressions for G A but also for bounds on G A It is recalled

that G A bounds were obtained by application of elasticity theory extremum

principles. If there are substituted into these extremum principles the special

axial shearing forms (3.5.33-34), there are obtained extremum principles in

terms of %0

All the G
A

principle s.

of the shearing formulation. (The reader may verify this.)

bounds can be obtained on the basis of these modified extremum

But because of axial shearing-transverse conduction analogy

the modified extremum principles also provide bounds for U T and so the

9¢ *

conclusion is reached that G A bounds are transformed into UT bounds by

replacement of phase shear moduli by phase transverse conductivities.

It is easily shown that the axial shearing transverse conduction

analogy also remains valid for orthotropic phases.

5.5.2 Expressions and Bounds

On the basis of the analogy proved in par. 5.5. I we can now transform

9¢

all the G A results into corresponding U results.
T

From (3.5. ii i) we have for the composite cylinder assemblage
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_T=Ul +

UT=Ul

v2

1 v 1

U2 -U 1 2U 1

U 1 v I + U2 (l+v2)

U 1(l+v2)"+ U2 v I

(a)

(b)

(5.5.15)

where 1 denotes matrix and 2 denotes fibers. This result has been given in

[5. i"2 ] .

For dilute reinforcement of circular fibers we have from (3.5.13 1)

• U2 - U 1

u T= uI (I +2 _2 +Pl
o ) (s.s. z6)

where

C=V 2 << 1

Bounds for any transversely isotropic fibrous material are provided

by (3.6.63) and (3.7.87).

Elementary bound s

w

! < UT _ _ (5.5.17)

Improved bounds

, U I v I + _ (l+v2) ]
= (a)

UT(- ) U 1 U 1 (l+v2) +U 2 v I
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_T(+)

_/2 v2 + Ul (l+Vl)

= U2 _/2 (l+Vl) + Ul v2

(s. 5.18)

The conduction analogue of a rigid phase is a phase with infinite

(very large )conductivity. The conduction analogue of an empty phase is

an insulating phase. Evidently the special bounds (3.6.30) are also applicable

for transverse conductivity. Furthermore, all axial shearing numerical results

can also be interpreted as corresponding results for transverse conductivity.

(This has been pointed out in [5.37 for the case of periodic arrays ).

Experimental values of thermal conductivities of FRM have been

reported in [5.4_ • There is not good agreement between these and the

theoretical results obtained. In particular, experimental values reported

are consistently below the lower bound (5.5.18a).

On the other hand, similar theoretical results for two phase is0tropic

media (see appendix) do agree very well with measured values of effective

magnetic permittivity, dielectric constant and electrical conductivity of

two phase media, [5.57 • It is consequently of impo_ance to explain the

disagreement in the thermal conduction case and to perform further experiments.
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APPENDIX

Conductivity of Isotropic Composites

We consider a statistically isotropic composite which consists of

two isotropic phases. If the only information available is phase conductivities

PI' u2 and phase volume fractions v I, v 2 , then elementary bounds for u

of the composite are given by

-I

u I U2
< U _< u I v I +u 2 v2 (i)

Wiener, [5.5].

Improved best, pos sible bounds, are

v 2 , v 1

Ul + _I Vl < U < P2 + 1 v 2
+ ..----- _ + i.-----

-5 3ui ui-% 3

(2)

Hashinand Shtrikman, [5.6] . U2 > U I

The bounds apply to FRM with randomly oriented fibers as well as to

isotropic particulate composites. In the latter case the lower bound (2) is

appropriate as a composite spheres assemblage expression with matrix 1 and

particles 2.

For further results and discussion see e.g. [5.7-8] .
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Table 5.5.1 Thermal Conductivities of Fiber and Matrix Materials

Fiber Ma terial

Ma trix

E-Glass

A1203

SiC

Magnesium

Aluminum

Epoxy (typical)

Thermal Conductivi£y

Cal/cm-sec-°K Btu-in/hr-ft2-°F

0.00214 6.2

0.08 232

1.7 4930

0.38 1090

0.53 1520

0.00045 1.3
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6.1 UNCOUPLED THERMO-EIASTICITY

6.1.i Formulation

We are concerned with an elastic body in which there are stresses,

strains and temperature changes. As a consequence of the temperature changes

there are expansions or contractions Which affect the strains and stresses that

would have been present under isothermal conditions.

The simplest constitutive relations for a generally a nisotropic

thermoelastic body are

= SijklCkloij + cLij%0 (6.1.1)

the inverse of which is

crij = CijklCkl + Fij_

where

Here

Fij = _ Cijkl akl

(a)

(b)

(6.1.2)

%o is the temperature rise relative to a reference temperature which is

arbitrarily chosen as zero, Cijkl and Sijkl are elastic moduli and compliances,

respectively, at reference temperature, and aij are the thermal expansion

coefficients. Because of the assumption that elastic properties remain

unchanged by the temperature change, (6.1. l) cannot be expected to hold

for large temperature changes.
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It is seen from (6.1.1) that when o..
z]

¢.. = C£. q)
i] i]

= 0 , then

(6.1.3)

It follows that a., are the stress free-strains per unit temperature change.
i]

Also, in view of strain symmetry

= a (6.1.4)
ij ij

There are thus six expansion coefficients in the general anisotropic case.

As in the case of conductivity, par, 5.2,1 , it is always possible to find

a set of material axes (principal axes of ctij ) in which the mixed ctij will

vanish, and thus a.. will be orthotropic.
1]

If the material is elastically and thermally isotropic, (6.1.2) reduces

to the following form

Gij = kCkk 6.. +2G¢.. - 3Kc_6 . (6,1.5)i) i] i]

Here X and G are the usual Lam6 and shear modulus, K is the bulk modulus

and (I is the isotropic expansion coefficient,

Equs, (6,1,5) may be inverted to obtain the isotropic form of (6.1.1)

but the resulting expressions are inconvenient. Equivalent more convenient

expressions are

1 [(i+_) o.. - v (_kk ] + (i _0 i = j (a)'ij = E-- i]

= ij i #j (b)
¢ij 2G

(6. i.6)
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If the material is elastically and thermally transversely isotropic, with

x 1 axis of symmetry, then the elastic stress-strain laws are given by (3.4.86-87)

while the thermal expansion matrix assumes the form

[a..] = 0 a (6.1.7)
11 T

0 0

In this event the constitutive relations (6.1.2) for normal strains and stresses

assume the form

Oll = n¢11 + _ (e22 + ¢33 ) - (ha A + 2£ _T) _0

°22 = ;'¢11 + (k +G T) ¢22 + (k - GT)¢33 - (£_A +2ka T) ¢p (6.1.8)

c_33 = £ ¢11 + (k- G T) ¢22 + (k +G 7) ¢33- (/'_A +2kaT) _o

while (6.1.1) assume the form

Ii - EA _ii EA
(022 + 033) + ctA

vA 1

¢22 - EA °11 + E T _22

,p
T

ET cr33 + (_T eo
(6.1.9)

V V
_ A T

¢33 EA °11- ETO22

1

+ ET (;33 + aT
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The shear stress-strain relations remain, of course, as in isothermal

ela sticity

_12 = 2GA _12

= 2GT %3 (6.1. i0)

Then

_13 = 2GA ¢13

Suppose that the body is in static equilibrium without body forces.

= 0 (6.i.ii)
ij ,j

We consider firsta body which is homogeneous and isotropic. To obtain

differentialequations for displacements u. and temperature _ , the strains
1

in (6.1.5) are expressed in terms of displacement gradients and the resulting

expressions are substituted into (6. i.Ii). We then obtain

(k +G) u. +G u. - 3Kc_0 . = 0 (6.1.12)
;,ji 1,jj ,1

Another differential equation is needed for the temperature _ . It is the funda-

mental premise of uncoupled thermoelastic theory that the temperature _0 may be

determined from a heat conduction problem without consideration of mechanical

deformation. We adopt this assumption and we furthermore assume steady state

conduction. The problem of steady state conduction has been discussed in

chap. 5.2; for an isotropic homogeneous body a general class of problems is

formulated by (5.2.9-10) . We thus regard <0 in (6.1.12) as a know_, function
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which has been found by solution of the heat conduction problem. Conse-

quently, the term -3K0_q3 . in (6. i. 12) is of the nature of a body force.
,I

In the general anisotroplc homogeneous case we obtain the differ-

eutial equations by substitution of (6.1.1a) into (6.1.II).

we find

Cijkl (Uk,lj - O_kl qo,j) = 0

Using also (6, 1.4)

(6.1.13)

and the heat conduction problem is now defined by (5.2.5) and (5.2.10).

Appropriate boundary conditions are prescribed tractions or displace-

ments on the boundary S. An expressionfor tractions is provided by substitution

of (6.1.2) or (6.1.5) into T, = o.. n . We thus have forthe generally
i l] ]

anisotropic and isotropic cases, respectively

T i = Cijkl (uk, t - q_C_kl) nj (a)

(6. I. 14)

= - + 2G_. n, (b)
T i (k ekk 3K_%0) n i lj }

A general form of boundary conditions is

o
u = U on S (a)
i i u

T T°= . on S (b)
i I T

(6. i. 15)

where T. in (6. I. 15) is to be interpreted in the fotms (6. I. 14).
1
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The thermoelastic problem thus formulated has a unique solution if the

matrix of elastic moduli is positive definite. A proof for the isotropic body

may be found in /4.6] , chap. 2. Proof for the anisotropic body is analogous.

Extension of the formulation to heterogeneous bodies consisting of

homogeneous phases is immediate. As an example we consider a body

consisting of two anisotropic phases. The phase differential equations are

(1)
(u(1) _ a(1) (i)) = O (a)

Cijkl kl,j kl fl0,j

C(2) (u(2) _ 0,.(2) (2)) = 0 (b)
ijkl kl.,J k[ ,j

where 1 and 2 denote the phases.

there are now adjoined the interface conditions

(I) (2)
u . =u

i i

on S12

(6. 1.16)

To the boundary conditions (6. i. 15)

(a)

(6. I. 17)

has been formulated in par. 5.2. i.

T(I)= T(2) (b)
l i

where (6.1.17) are to be taken in the forms (6.1.14a).

Uniqueness for two or multiphase bodies is also easily proved, it

being necessary that the matrix of elastic moduli be positive definite, everywhere .

The associated heat condition problem to determine q)(1)and %0(2)
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6.1.2 Elementary Solutions

We consider first a heat conduction problem whose solution will be

needed later. Let a heterogeneous body, consisting of homogeneous

anisotropic phases, be subjected to a constant boundary temperature.

1 o_(s) = _ (6.1.18)

0
Then the temperature everywhere in the body is also _ . Thus

_(x) = ®o (6.i.19)

To prove this we note that (6. i. 19) trivially satisfies the phase conduction

differential equations (5.2.13) . The boundary condition (6. I. 18) and the

continuity condition (5.2.14a) are obviously satisfied by (6.1.19) . The

heat flux vector associated with (6.1.19) vanishes everywhere and so (5.2.14b)

is also satisfied; this completes the proof. Obviously, the result is valid

for any number of phases.

Next we consider a homogeneous anisotropic body which is subjected

to the temperature boundary condition (6.1.18) and the usual homogeneous

displacement boundary condition

O
u. (S) = ¢.. x. (6.1.20)
l i] ]

The solution of the thermoelastic problem under boundary conditions (6. I. 18)

and (6.1.20) is (6.1.19) and

o (6.1.21)
ui(x) = e ij xj
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Proof: Obviously (6.I. 18) is also the temperature solution for the present

homogeneous body. The differentialequations for the displacements are given

O
by (6.i.13) and since the temperature cp is constant its gradient vanishes

and so (6,i.13) reduce to the elasticity differentialequations (3.2.18). Now

(6.1.21) satisfies these equations and certainly also the boundary conditions

(6.1.20). This completes the proof.

The strains in the body are homogeneous and are given by

o
¢.. (x) = e (6.1.22)

1) ij

and the homogeneous stresses follow from (6.1.2) , (6.1.4) and (6.1.19) as

- C_ O
(x__) = Cijkl (¢?1_ kl q_ ) (6.1.23)(_ij

Dually, the temperature (6.i. 18) and homogeneous traction boundary

conditions

T. (S)= o.. n. (6.1.24)
i l] ]

are applied to the boundary. It is easily shown that the stresses and strains

are again homogeneous and are given by

O
o (x) = o., (a)

iJ i]

(6.1.25)

_ o + o
¢ij (x) = Sijkl kl _ij %° (b)

The solutions (6.1.22-23) and (6.1.25) are the therrno-elastic extensions of the

elastic solutions obtained in par. 3.2.2.
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6.2 EFFECTIVE THERMO-ELASTIC STRESS-STRAIN RELATIONS

6.2.1 Establishment of Stress-Strain Relations

A statistically homogeneous heterogeneous body of volume V and with

bounding surface S, which consists of any number of phases, is subjected to

the boundary conditions (6.1.18) and (6.1.2 1) , which are here rewritten for

reasons of convenience.

O

= (a)

(6.2.1)

0
u.(S) = ¢ ..x (b)

1 1] j

The boundary conditions (6.2.1) are thermoelastic homogeneous boundary

conditions since, as has been shown in par. 6.1.2, they produce uniform

fields of temperature, strain and stress in homogeneous bodies of arbitrary

shape. As has been done previously we postulate that the stress and strain

fields in a large SH heteroqeneous body subjected to thermoelastic homoqeneous

boundary conditions are SH, except for a. narrow boundary layer near the

externa I surface.

Evidently, the average strain theorems derived in par. (3. I. i) remain

valid in the present case and therefore

-- 0

@.. = @ ..
i] U
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Since the thermoelastic problem is linear we may consider instead of (6.2.1)

the two separate cases

(s)= o (a)

(6.2.2)

0
U. (S) = ¢.. x. (b)

1 1j ]

0

(s)= (a)

u.(S) = 0 (b)
1

(6.2.3)

The superposttion of the fields due to (6.2.2) and (6.2.3) , respectively,

yields the field due to (6.2.1). It follows from the result (6.1.19) that for

(6.2.2) applied the temperature vanishes throughout the heterogeneous body.

Consequently, the body under (6.2.2) applied is isothermally elastic and the

theory of elastic heterogeneous bodies is valid. Therefore the average stress

-I

ij
for boundary conditions (6.2.2) is given by

_I * 0 * -

°i-j = C ij kl ¢ kl = C ij kl c kl (6.2.4)

where C ij kl
are the effective elastic moduli at zero temperature (i.e.

reference temperature).

Next we consider the boundary conditions (6.2.3). The physical situa-

tion expressed by these is heating with boundary deformation prevented by a

bonded rigid enclosure. It is known from the result (6.1.19) that the temperature
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0
throughout the heterogeneous body is uniform and equal to %0 . It is our

-II
purpose here to show that the average stress, g , when (6.2.3) is applied

ij
O

is proportional to %o .

To see this we set up the thermoelastic equations in this case. We

assume for simplicity two phases only which are, however, generally

anisotropic. We have from (6.1.16) the phase differential equations

c (I) u(I) = 0 (a)
ijkl k,lj

C (2) u (2) = 0 (b)
ijkl k,lj

(6.2.5)

The phase interface continuity conditions (6.i. 17) assume the form

(1) u(2)U =
i i

(0(2) u(2) (i) . u(1) ) n = o
ijkl k,1 - C ijkl k,1 j

(a)

(6.2.6)

(C(2) a(2)- C(1) a(1)) nj (b)ijkl kl ijkl kl

where (6.1.14a) has been used to obtain (6.2.6b).

0
Suppose that %o = 1 and denote the corresponding displacement solution,

as defined by (6.2.5-6) and (6.2.3b), wi__). It is easily seen that the vector

o
field '9 wi(x_) satisfies equs. (6.2.5-6) and (6.2.4b) for%o°fi 1. Hence

O

u.(x) = %owi(x) (6.2.7)1 --
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where ui(x)_ is to be interpreted as u (I)I.(x)_

phases, respectively.

Now from (6.1.1b) and (6.2.7)

and u (2)(x) in the different
1

eli(x) o w k +1/ (x)] (6 2 8)'" - = [Cijkl(X) ,1 ij " "

where Cijkl (x) and Fij (x) denote the piecewise constant variation of those

quantities throughout the heterogeneous body.

may be expre s sed a s

-II * o
_.. = F.. %0 (6.2.9)

l] 1]

Hence, the average of (6.2.8)

where

Fij = Cijkl Wk,1 + Fij

_II o
This proves our assertion that _.. is proportional to %0

i]

Superposition of (6.2.5)and (6.2.9) yields

* 0 * O
81 + 8 II = 8 = C + r _ (6.2.i0)
ij ij ij ijkl ¢ kl ij

0 0

Since _ is uniform its average is certainly also _p . Thus (6.2. i0) may

be rewritten a s

- * -- * --

oij = C ijkl Ckl + I'ij _
(6.2.11)

all averages being body averages as well as RVE averages.
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A dual set of thermoelastic homogeneous boundary conditions is pro-

vided by (6.1.18) and (6.1.24). Thus

O

%o(s)= %o (a)

T. (S) oO= ,, n, (b)
l i) ]

(6.Z.12)

By the same kind of reasoning which led to (6.2. i0-ii) it is easily proved

that for (6.2.12) applied

- * O * O

eij = Sijkl q kl + c_ij %0
(a)

(6.2.13)

-- * -- * --

= Sijkl Okl + c_ij %O (b)¢ij

where S are the isothermal effective elastic compliances at zero temperature,
ijkl

a are some constants expressed by field averages, a.. are the average
ij i]

O - O O
stresses o and %0 is the average of the uniform temperature %o , thus %0 itself.

ij

The constants _.. are defined by analogy with (6.1. lb) as the effective
1J ....................

the[real expansion c.oeffi_.cien_ts (ETEC) of the heterogeneous body. We also

adopt the usual assumption (compare par. 3.3.2) that equs. (6.2. Ii) and

(6.2.13b) are identical for a SH body. Since C and S are reciprocal
ij kl ij kl

it follows easily by substitution of (6.2.13b) into (6.6. ii) that

r =-c _ (6.2.14)
ij ijkl kl

which is the analogue of (6.1.2b).
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In analogy with (6.1.3) we can interpret the eL.. as average stress
1)

free-average strains. To see this we consider (6.2.12) in the special case

O
when o.. = 0.

i]
The resulting boundary conditions are

O

(s)=

T,(S) = 0
1

(6.2.iS)

In this case the average stresses evidently vanish and we have from (6.2.13)

- * O * -

¢ij = C_ij _ = _ij q0 (6.2.16)

which shows that _..
1]

are the average strains for a body with traction free

boundary and unit temperature rise.

Also because of ¢.. symmetry we have from (6.2.16) that
U

I * w

=CL
aij ji

(6.2.17)

The present derivation of thermoelastic effective stress-strain relations

has been carried out for two phase bodies but, evidently , similar relations

are valid for heterogeneous bodies consisting of any number of phases.

Finally it should be noted that relations as (6.2.10-11) and (6.2.13) are

not restricted to SH bodies but are valid for any heterogeneous body. However,

w w

if the body is not SH C ijkl and Sijkl will not in general be reciprocal, and the

relation (6.2.14) will not be valid and (6.2.10-Ii) and (6.2.13) will not be

effective constitutive relations but simply linearity relations.



589

6.2.2. Relations Between Effective Elastic Properties and Effective Thermal

Expansion Coefficients

In par. 6.2.1 effective thermal expansion coefficients have been defined

in terms of field averages. It would seem at first sight that in order to obtain

specific results for ETEC it would be necessary to find internal fields for

specific internal geometries (such as, for example, the composite cylinder

assemblage) and on the basis of these compute averages and thus obtain the c_
ij

Fortunately this is not necessary. We shall derive in the present paragraph

fundamental relations between effective elastic properties and ETEC which

will enable us to determine the ETEC of any two phase body on the basis of

its effective elastic properties, phase elastic properties and phase expansion

coefficients.

The theory to be developed is based on a remarkable paper by Levin [6.1 I.

We consider a heterogeneous multiphase body which is subjected to

constant temperature change on the boundary and to zero surface tractions,

the internal fields in this case being denoted i J aJq0 , ¢ and ... Then
ij i]

, O
(s) = = ,o'(x) (a)

T'. (s)= 0 (b)
1

(6.2.18)

In view of (6.1.i) and (6.1.19) the strains, stresses and temperature at any

interior point are then related by

0
¢' ' + (6.2 19)

= Sij kl _ kl _j _ij

where S are piecewise constant,
ij kl
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Next we consider the same heterogeneous body, subjected to zero

surface temperature and homogeneous non-vanishing traction boundary condi-

tions. The field variables for this case are written unprimed. Then

_0(s)= 0 (a)

O
T (S) = _ n (b)

l ij j

(6.2.20)

In view of (6.2.20) and (6.1.19) the internal temperature vanishes

everywhere. Therefore

_ij = Sijkl °kl (6.2.21)

which is the usual isothermal elasticity stress strain relation.

We note that by the average stress theorem,(3.1.35),we have, because

of the homogeneous boundary conditions, (6.2.18b) and (6.2.20b), respectively.

_' = 0 (a)
1]

- 0
= o (b)

ij ij

By the average theorem of virtual work,(3.1.50),and by (6.2.22)

foij
I

¢ ij dV = o °ij %'jv (a)
V

°'ij ¢ij dV = 0

V

(b)

Insertion of (6.2.21) into (6.2.23b) yields the alternative form

(6.2.22)

(6.2.23)
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S oij 'ijkl _ kl dV = 0

V

(6.2.24)

w

In view of (6.2.18), ¢_. in (6.2.23a) canbe replaced by (6.2.16). We also
1]

replace _' in the left side of (6.2.23a) by (6.2.19) and make use of (6.2.24).
1]

The resulting equation is

f<Tij o *aij dV = _iJ. ccij V (6.2.25)

V

Suppose that the body consists of M homogeneous phases, the

th
expansion coefficients of the m

(m)
phase being a Then

ij

/_ a dV = Z a(m)/ _ dV= F a (m) _ (m)ij ij m ij ij m ij ij Vrn

V V
m

(6.2.26)

where _ (re)is the average of o.
D 1]

th
over the m phase region, which has the

volume V .
m

Now it should be recalled that o.. are stresses in an isothermal
1]

elastic body with traction boundary conditions (6.2.20b). By linearity

-o (m)=ij B (mj)kl O°kl (6.2.27)

th
where -(m) is a stress-average influence tensor for the m phase (compare a

15 ij kl

similar relation in (3.3.38)). We insert (6.2.27) into the extreme right of

(6.2.26) and then the resulting expression into (6.2.25) . After rearrangement

we obta in
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* c_(m)_(m) o
[=kl-Sm _j" _ijklvm]_kl=° (6.2.2 8)

th
where v is the volume fraction of the m phase.

m

tensor the parentheses in (6.2.28) must all vanish.

we have

M (m)_(m) *
Z ctki 15klij v = _.

m= 1 m zj

O

Since ok!is an arbitrary

Interchanging subscripts

(6.2.29)

m

Next we consider the average ¢.
i]

Firstly,

- * o
¢,.=S (_

z] ij kl kl

which can be written in two ways.

(6.2.30)

where S ij kl are the effective elastic compliances . Secondly, in view of (6.2.2 1)

cij Sijkl °kl dV = _- Zm _ijkl kl

V V

S (m) (m)= S _ v (6.2.31)
m ij kl kl m

We insert (6.2.27) into the last of (6.2_31) and equate to the right side of (6.2.30).

Rearrangement yields an expression of the form (6.2.28) and again the coefficients

o
of a kl must vanish. This yields
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m S
_4 s(m) B( v = S (6.2.32)
rn=l ijrs kl m ijkl

Finally, we consider the average of q. which may be writtenl]

_ij = 7 _(m) v = Z _(m) o (6.2.33)m ij m m Sijkl Vm _kl

where (6.2.27) has been used. Equating the extreme right of (6.2.33) to

the right side of (6.2.22b) we find after rearrangement

M (m)
Z B v = I. (6.2.34)

m= 1 ijkl m ljkl

where I is the unit tensor defined by (3.2.7).
ij kl

W

It is our purpose to establish a relation between S ijkl' aij and known

_(m) and a(m) To this end the unknown influence
phase properties S ijkl ij

_ (m)
coefficients t3ijkl must be eliminated from equs. (6.2.29), (6.2.32) and (6.2.34).

This can be done only when the heteroqeneous body consists of no more than two

(1) and B(2)
phases. In that event there are two sets of influence coefficients B ijkl ijkl

and we have three sets of equations (6.2.29), (6.2.32), (6.2.34) which serve

to eliminate them. The result of the elimination can be written in the following

equivalent forms



594

* , (2) (1) * s(1) )
= a (1) + takl - a )aij ij kl Pklrs (S rsij rsij

* = a(2)+, (2) (1))
aij ij _akl - akl

_ s (2))
Pklrs (Srsij rsij

* (k25 (i)) (S* -_ij = _ij + (0_ - _ kl Pklrs rsij - Srsij)

(a)

(b) (6.2.35)

(c)

where the tensor Pklrs is defined by

Pklrs (S(2) - S(1) ) =rsij rsij Iklij
(6.2.36)

m

and aij, Srsij are defined as usual by

- = a(1) v 1 + a(2 )v 2aij ij l)

= s(1) s(2) v2Srsij rsij Vl + rsij

We have thus obtained explicit expressions for aij in terms of Sijkl and phase

properties. A relation of type (6.2.35) was first given implicitly in [6.1]

for a macroscopically anisotropic two phase body with isotropic phases. The

present more general and explicit relation was given in [6.2 ] .

When there are more than two phases the number of influence coefficient

sets B(_)kl is larger than two but the number of equation sets available is still

three. Therefore, elimination is not possible and a relation of type (6.2.35)
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cannot be established. It is, however, possible in that case to bound
ij

by variational methods. This subject will not be discussed here and the

interested reader is referred to [6.2 ].

It should be emphasized that (6.2.35) is a general result for a SH

two phase body which is macroscopically anisotropic and consists of

anisotropic phases. As an example for the use of (6.2.35) we consider the

simple case of a statistically isotropic body, consisting of isotropic phases.

In this event

= e 6 (a)
ij ij

6(1)ij= _i 6..Ii, _(2)_ij- _2 6ij (b) (6.2.37)

m m

c_ij = c_ 6ij, o_ = O_lVl + o_2 v 2 (c)

Insertion of '(6.2.37) into (6.2.35c) and contraction of the resulting equation

over all free subscripts yields

* - 1 *

= _ + %- (_-_l)Pkkrs(Srsit- grs11') (6.2.38)

Similar contraction of (6.2.36) yields

(S(2) - S (I)) = 3
Pkkrs rsii rsii

(6.2.39)

It is not difficult to show that for an isotropic material
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Sij kl

k

6GK %j %1 +_ 4G (Sik 6jl + 6il 6jk) (6.2.40)

Consequently

S

rsii

and therefore

6
rs

3K

6
* rs

S
rsii *

3K

6
(2) = r_..___sS
rsii 3K 2

rsii

S(1)..
rsll

6
rs

3 K

6
rs

3K 1

(a)

(b)

(6.2.41)

where

v 1 v2

K K I K2

Insertion of (6.2.41a) into (6.2.38), of (6.2.41b) in (6.2.39) , and combination

of the resulting expressions, yields

* - _2 -_1 1
a =a+ 1 1 ( * K )

K
K2 K1

(6.2.42)

Forms equivalent to (6.2.42) are obtained by use of (6.2.35a,b) instead of

(6.2.35c). These are
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* cL2 - al i i

CL = (_i + 1 1 ( * K1 ) (a)K

K2 K 1

(6.2.43)

* G2 - C_l 1 1

c_ = c_2 + 1 1 ( * K2 ) (b)K

K 2 K 1

The fundamental results (6.2.42-43) explicitly express c_ in terms

of K and phase properties. Thus, if K is known either from theory or

experiment, a is determined. These results have first been derived in

[6.1] in different form and have also been independently derived in [6.2-4].

An interesting result is obtained if

K 1 a 1 = K2 a 2
(6.2.44)

Such a relationship is approximately valid for many materials.

(6.2.42) reduces to

K :KI I:K2%

In that event

(6.2.45)

It has been shown in [6.2] thata relation of type (6.2.45) is also valid for

isotropic composites with an arbitrary number of phases, if the product Ka

is the same for all phases.

Furthermore, bounds on

terms of bounds on K

monotonically with K

can be easily obtained from (6.2.42) in

. It is to be noted that the right side of (6.2.42) varies

, the sense of the variation being determined by the sign of
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(6.2,46)

Consequently, we have

> 0 i.e. (K2 - KI) (_2 - al) < 0 (a)

a(..t) = i+ * ( * K ) (b)

K($)

(6.2.47)

< 0 i.e. (K2 - KI) (a2 - _i) > o (c)

* i _ ) (d)
c_(_+_) = _ +4 ( . K

K
(t)

Since stiffer materials have generally smaller thermal expansion coefficients than

more compliant materials, the relation (6.2.47a) is mostly fulfilled. This is in

accordance with the previously noted approximate validity of Kc_ _-const, for

many materials.

Best possible K bounds for macroscopically isotropic two phase

materials have been previously mentioned, (3.7.94). If these bounds are

inserted into (6.2.46) there are obtained best possible bounds for c_ . These are

4 G 1 (K 2 - Ki) (a2 - ai ) v 1 v 2 . _
< C_ --C_ g

3K I K 2 + 4 G I

4G 2 (K2 - K l)(ag-a I) v I v2

3K 1 K2 + 4 G 2

(6.2.48)
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provided that

K2 _ K1 G 2 _ G 1

and (6.2.47a) is valid.

The bounds (6.2.48) are valid for a FRM with randomly oriented fibers

as well as for any statistically isotropic two phase material.
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6.3 THERMO-ELASTIC FIBER REINFORCED MATERIALS

6.3.1 Effective Thermal Expansion Coefficients

It is recalled that equs. (6.2.35-36) determine the ETEC of any two

phase composite in terms of its EEC and phase properties. It is a straight-

forward matter to exploit (6.2.35-36) to derive expressions for a . of a two
1]

phase FRM in terms of its EEC.

For the sake of simplicity it shall be assumed that the two phases

are elastically and thermally isotropic while the composite itself is macro-

scopically transversely isotropic or square symmetric. Other cases, such

as macroscopic orthotropy or transversely isotropic phases, can also be

treated in a straightforward fashion; however, the necessary calculations are

somewhat heavy.

We first proceed to simplify (6.2.35) for the case of isotropic phases,

while the composite itself is macroscopically anisotropic in the most general

sense.

aij = _ 6ij + (c_2 - C_l) Pkkrs (S* -rsij Srsij ) (6.3 1)

Pkkrs (S(2) - S(1)" ) = 6 (6.3.2)
rsij rslj ij

Introduction of (6.2.37b,c) into (6.2.35c) yields

From (6.2.36)
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Since the phases are assumed elastically isotropic, S "1"_) and S "2"(_ are
rsij rsij

isotropic tensors of form (6.2.40) and therefore their difference which enters

into (6.2.36) is also an isotropic tensor. It therefore follows from (6.2.36)

that Pklrs is also isotropic and thus has the form

=P' 6 6 +P" 6 +
Pklrs kl rs (6kr is 6ks 61r)

where P' and P" are two scalars.

P = (3P' +2P") 6
kkrs rs

Therefore

(6.3.3)

Insertion of (6.3.3) into (6.3.2) yields

1 1
3P' + 2P ' =

S(2).._S (1) l/K2 - l/K1 (6.3.4)
rrn rrii

the last equation following from (6,2.4 lb), Insertion of (6.3,3-4) into (6,3,1)

and using the result

- _i i 6
Srrij 3 K ij

which follows from (6.2.40) , it is found that

I aiJ = _6iJ + 1/K2-1/K 1 (3Skkij " "-K" 6iJ)
(6.3.5)

Equ. (6.3.5) is valid for the ETEC of any two phase composite with isotropic phases.
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For purposes of application to FRMit is now assumed that the composite

is transversely isotropic or square symmetric. In that event

ij

V*aA 0 0

0 a 0
T

0 0 a TL J

(6.3.6)

and also

Skk22 = Skk33
(6.3.7)

Therefore, (6.3.5) reduces to

* c_2 - C_l * T )
a A= O. + I/K2_I/K I (3 Skkll - T

(a)

(6.3.8)

* - % - * i
a T = a + I/K2_I/K _ (3 Skk22 - T )

(b)

The EEC of a transversely isotropic or square symmetric FRM which

appear in (6.3.8) are given in (3.4 78).

. 1-2v A
S

kkl! *
EA

* 1
S
kk22

2k

(l-2VA)V A

E
A

We easily find

(a)

(b)

(6.3.9)



603

where (3.4.82-83) have been used to obtain (6.3.9b). Inserting (6.3.9)

into (6.3.8) we find

%_: _ + I/K2_I/K 1 rA K

(.)

a2-al [ 3 3(1-2VA)V A 5 1* =_ + . . --_--
aT I/K2-1/KI 2k E A

(a)

(b)

(6.3.10)

It is recalled that K is the phases three dimensional bulk modulus and E A, VA

and k are the effective axial Young's modulus , axial Poisson's ratio and

transverse bulk modulus respectively of the FRM. Expressions equivalent to

(6.3.10) may be obtained by use of (6.2 .35a ,b) instead of (6.2.35c). These are

_A : a + % _ 3(I-2_). 1 (a)
m I/K2-1/K I EA K m

(6.3. ii)

, c_2-al [ 3 3(I-2_A)_A 1 ]CLT = c_ + * * K
m 1/K2-1/K 1 2k E A m

(b)

m = 1,2

These results were implicitly given in [6.1 ] and explicitly in L6.2 ](*).

(*) In [6.2 ] there is a misprint in the equation corresponding to (6.3.10a).
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The results (6.3.10-11) determine the ETEC of any transversely iso-

tropic or square symmetric fibrous or fiber reinforced material in terms of

effective elastic properties. This is a rather unusual situation for it should

have been expected that in order to find ETEC, it would have been necessary

to find thermo-elastic fields in composites and then average them.

and v
A

It is to be noted that because of the general relations between k , E A

, par. 3.4.5, equs. (3.4.117-118), it is possible to express c_Aand c_T

in terms of one EEM only, e.g. k .

expressions which serve no particular advantage.

express (6.3.10) in terms of the group k , _% , £

The resulting expressions are

This, however, results in complicated

Another possibility is to

by use of (3.4.80-81).

. ]./_A = _ + 1-K2-l-K l 3 k -_. . .2 K
k n-_

[ ** ]
* 0"2 - _i 3 n -_ Y

C_T = _ +I/K2-1/K 1 2 . . .2 K

k n-_

(a)

(b)

(6.3.12)

These expressions have a certain theoretical advantage for bounding purposes

as will be explained further below.

* * *

Any analytical, numerical or experimental results for k , E A and v A

may be introduced into (6.3.10) to find the associated aA and C_T . We

consider here a few cases of interest.
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We recall the simple results of par. 3.5.2 for arbitrary fibrous

materials, when the phase Poisson's ratios are equal. Introduction of (3.5.55-56

into (6.3.10) shows that it thus becomes possible to determine a A for arbitrary

FM, but net a T. Thus

* a2- al [ 3(i-2v ) _ ]aA = _ + I_K2-I/K l _ K
(6.3.13)

when v2 = v I, for arbitrary fibrous geometry.

Next, we recall that composite cylinder assemblage analysis of par.

3.5.3 yielded rigorous closed form results for EA, and k , (3.5.96-97) ,
A

(3.5.91). Introduction of these results into (6.3.10) therefore gives the ETEC

of the composite cylinder assemblage model. Thus the ETEC of the composite

cylinder assemblage may be written as

1aAc = a" + _/K2-1/K 1 * K
EAc

a2-al [ 3 3(l-2VAc)_Ac []..
+ .. , . .

' aTc i/K2-i/Kz 2k
c EAc

(a)

(b)

(6.3.14)

Equivalent results have already been obtained previously, [6.5 ], by direct

composite cylinder analysis, before the general results (3.6.10) were known.

Fig. 6.3.1 shows plots of c_A and a T on the basis of the composite

cylinder assemblage model, for a typical glass-epoxy FRM.
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It will now be shown that the results (6.3.14) can be used to obtain

best possible bounds, in terms of phase properties and volume fractions, for any

transversely isotropic two phase fibrous or fiber reinforced material. To see

this itis advantageous to initially consider the ETEC expressions in the form

9¢ * *

(6.3.12) and to express in these _ and n in terms of k by use of the general

relations (3.4.112), par. 3.4.5. Then the terms containing k , _ and r_

in the brackets assume in each case the form

Ak +B
w

9¢

Ok +D

where A,B,C,D are some constants which are expressed in terms of phase

properties and phase volume fractions. Now it follows by differentiation that

9¢

the above given expression is a monotonic function of k . It therefore follows

that (6.3.12) are monotonic functions of k and since (6.3.10) are the equivalent

of (6.3.12) , the former are also monotonic functions of k .

We now recall the best possible bounds (3.7.68) for k , each of these

bounds also being a composite cylinder assemblage results with associated

9¢ 9¢ W _¢ W

E A and _A " It follows that ifa set of k , E A and v A
for a composite cylinder

assemblage is inserted into (6.3.10) then the resulting expressions (6.3.14) are

best possible bounds for the ETEC of any transversely isotropic fibrous or fiber

reinforced material whose phase properties and phase volume fractions are the

same as those of the assemblage. Thus, best possible bounds are defined by

(6.3.14) in following fashion: Best possible bounds for the ETEC of transversely
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isotropic FM or FRM consisting of isotropic phases 1 and 2 with volume

fractions v l, v 2 are given by (3.6.14) evaluated, (a) for a composite cylinder

assemblage in which 1 is matrix and 2 is fibers, (b) for an assemblage in which

2 is matrix and 1 is fibers, the phase volume fractions of both assemblages

being the same.

It is possible to give a complex analytical criterion as to which of the

bounds are lower or upper, but it is probably best to ascertain the nature of

the bounds on the basis of the numerical results obtained. An example for this

procedure is shown for a glass-epoxy composite in fig. 3.6.2 where lower

bounds correspond to an assemblage with glass matrix and epoxy fibers and

upper bounds are the composite cylinder assemblage results of fig. 3.6.1.

6.3.2 Internal Stresses

The unusual aspect of theory of ETEC as developed above is the success-

ful avoidance of the problem of thermo-elastic field computation in composites.

This in contrast to theory of other effective physical properties.

If it is desired to obtain some information about internal stresses due to

temperature changes, the thermoelastic problem of the composite has to be con-

sidered in full detail. It is recalled that the general problem of two phase com-

posites has been formulated in par. 6.1.1. It is our present purpose to consider

the problem, as was done in par. 3.5.1 for isothermal elastic fibrous or fiber

reinforced specimens, with the aim of reducing the three dimensional formulation

to a two dimensional one.
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Consider a long cylindrical fibrous or fiber reinforced specimen,

fig. 2, i. l,whose phases are thermo-elastically transversely isotropic about

the x I direction. The specimen is subjected to the previously considered

boundary conditions

O

,.0(S)= q_ = const. (a)

or

o

u. (S) = e ..x. (b) (6.3.15)
i i] ]

T (S) o°= .. n. (c)
i z] )

Proceeding as in par. 6.2.1,the boundary conditions (6.3.15a,b) are split into

(6.2.2) and (6.2.3) which are applied separately. Now when (6.2.2) is applied

the temperature vanishes throughout the specimen by (6.1.18-19) . Thus (6.2.2)

lead to an isothermal problem which has been fully considered in par. 3.5.1.

Consequently, it is sufficient to consider the problem

O

q0(S) = _ = const. (a)

u (s)= 0 (b)
I

and superpose on the solution the isothermal solution under (6.3.15b).

Similarly the problem (6.3.15a,c) may be split into

_(s) = 0 (a)

T (S) o°= ..n. (b)
i I] ]

(6.3.16)

(6.3.17)
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0
%0(S)= %o = const. (a)

T. (S) = 0 (b)
1

(6.3.18)

Again, (6.3.17a,b) is an isothermal elastic problem which has been fully

discussed in par. 3.5.1 and so it is only necessary to consider (6.3.18).

We consider initially the problem (6.3.16) . Adopting the semi-inverse

approach of par. 3.5.1 the displacements are assumed to be of form (3.5.9).

Since, however, in the present case u I (S) vanishes, because of (6.3.16b), it

O
follows that e in (3.5.9) vanishes.

ii

thus assume the plane strain form

u I (x_) = 0

uz (x)=u z(xz,x 3)

u3 (x)=u 3(xz,x3)

The internal displacements and strains

(a)

(b) (6.3.19)

(c)

¢ (x) = ¢ (x2,x3) o,,IB=2 3 (a)c_IB - ctB
(6.3.20)

ell = ¢12 ¢13 0 _)

It is furthermore recalled that because of (6.1.18-19) and (6.3.16a)

the temperature q) is constant and equal to q0° throughout the specimen. Using

this result together with the strains (6.3.20) in the transversely isotropic

stress-strain law (6. I. 8), (6. i. i0) , we have for the internal stresses
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o
o11(Xz'X3)= s (_22+ %3 )- (_ + 2S_T)_ (a)

c_8 (x2 ,x3) = (k-GT) cy%f 6c_B+ 2GT col8-(_A + 2k_T)<P°60_ B
(b) (6.3.21)

_12 = _13 = 0 (c)

where elastic moduli and thermal expansion coefficients assume different values

in each phase. An interesting consequence of (6.3.21) is that a uniform temper-

ature rise does not produce axial shear but does produce transverse shear.

Evidently, the equilibrium equations (3.5.13) remain unchanged.

Insertion of (6.3.21) into (3.5.13) leads again to the differential equations

(3.5.14) which are rewritten

k I u (I) + G T u (I) = 0 in R 1 (a)

k2 u (2) + u (2) = 0 in R2 (b)6,8 cL GT2 cL,88

(6.3.22)

The displacements must satisfy continuity at interfaces.

u (I) = u (2) on C
_ 12

Thus

(6.3.23)

Traction continuity requirement leads to
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[(k 2 -GT2) u (2) - (k -GTI) u(l_ (u(2) u (2)B,_ 1 ,B ] na + [GT2 B+ ) -

GT1 (u(1) (i)- ,B +u B,9 ] nB =

= [ (_i _AI + 2kl %fl ) - (_2 aT2 + 2k2 aT2) ] o_0 ncL on C 12 (6.3.24)

The problem may thus be summarized as follows: find the plane dis-

placements u
(i)

(x_ ,x_), u '2'f_..(x^ ,x_) which satisfy the differential equations
O_ z o u_ i. 0

(6.3.22), the boundary conditions

ua(C) = 0 (6.3.25)

and the continuity conditions (6.3.23-24)

It is easily seen that the mixed problem

O
%o(8) = _p = const. (a)

Ul (S) = 0 (b) (6.3.26)

T0_(S) = 0(_8 nB (C)

also falls under the present category. In this case the isothermal problem is

(6.3.26) with _0° = 0, which is a plane strain problem to be solved by the

method given in par. 3.5.1. The remainingthermo-elastic problem is (6.3.26)

with T {S) = 0. The formulation of this problem is the same as the previously

considered thermo-elastic problem with (6.3.25) replaced by

TcL (O) = 0 (6.3.27)
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Next we consider the problem (6.3.18). Again the displacements are

assumed to be of form (3.5.9), but in the present case there is no plane strain

o
condition, so ¢

ii
does not vanish and is unknown. Consequently, strains

have the form (3.5. i0) and use of (6.1.8) , (6. I. I0) leads to the following

internal stresses

o
o + 2, + ¢33 ) - ('n,_A+2_,sT )%o (a)_ll(X2,X3) = n¢ ii (¢22

oo_B(x2,x 3) = [2,¢(_I+(k-GT ) ¢_yy] 6cob + 2GT ¢o_B-(2,CCA+2ksT)m°6c_B (b) (6.3 .28)

c_12 = o13 = 0 (c)

It is seen that also in the present there is no axial shear throughout the specimen,

Stress equilibrium equations remain of form (3,5.13) and it is easily seen

that insertion of (6.3.2 7) into (3.5.15) again recovers the differential equations

(6.3.22).

Continuity conditions at the interface consist again of (6.3.23) while

(6.3.24) is modified and assumes the form

[(k2-GT2) u(2)B,B-(kl-%l)U(1),B]nc_ + LGT2(U(2) B+o., uB,_(2))_GTI(U(1),B+u(1)()]B, n_ =

= {(_2-ZI ) o + [(CICCA I + 2k I 1) - ] _po¢11 sT (_'2(ZA2+2k2sT2) } no_ °nC12
(6.3.29)
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It remains to consider the boundary conditions (6.3.18b). On the

terminal sections Ao, AH of the cylinder the traction components are a I 1 'g12 '°13

the last two of which vanish by (6.3.280). Therefore the remaining condition is

_ll(X2,X 3) = 0 x I = o, H (6.3.30)

On the lateral surface of the cylinder the traction T 1 vanishes since n I, o12 and

o13 vanish. Therefore, the traction conditions to be satisfied there reduce to

T (C) = 0 (6.3.31)
0L

which written out in terms of displacement gradients, by use of (6.3.28),

assume the form

(k-G T) uB,Bn(_+GT(Ua, B +uB, a) nB=

= [-2, ell + (2'_A + 2kaT)_°° ] no_ (6.3.32)

O

As in par. 3.5.1, the unknown strain e 11 is to be found by satisfaction

of (6.3.30) which can only be achieved in the Saint Venant sense and thus the

cylinder must be much longer than cross section diameter. Instead of (6.3.30)

we write

/oi i dA = 0

A

x °ii

A

dA=/x 3 °ll

A

dA=0

(a)

(b)

(6.3.33)
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Insertion of (6.3.28a) into (6.3.33a) leads to

o + e33)o naA +2kc_Y _ - Z(_22

¢11 = - (6.3.34

where an overbar denotes section average.

It is seen that in order to carry out a solution a displacement field

which satisfies (6.3.22) subject to (6.3.25) , (6.3.29) and (6.3.32) , with

O 0
arbitrary e , must first be found. Then e is determined by (6.3.34).

11 11

There is of course no guarantee that (6.3.33b) are also satisfied.

As in the isothermal elastic case they are automatically satisfied for phase

geometries with x 2 , x 3 axes of symmetry, statistically homogeneous phase

geometry (in the limit), and also for composite cylinder assemblages (since

in that case (6.3.33b) are satisfied by symmetry for a_y one composite cylinder).

The procedure described is not feasible for numerical analysis since

O

it would be impossible to cope with an arbitrary e ii "
In that event it is

necessary to split the displacement field u into two parts u' and u" .
(I ' CL CL

O
The first satisfies (6.3.29) and (6.3.32) with zero _ , is thus proportional

O O
V'

to ¢ii and may be written ¢Ii (l

Similarly, u" satisfies (6.3.29),

O O v ,,
to qo and is written q0

complete solution is

O

' corresponds to unit e II.• where v

o is thus proportional(6.3.32) with zero ell,

, where v" corresponds to unit q0°. Then the

o v' + Ov,, (6.3.35)
u ii (i (i
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O

where v' , v" are numerically known functions. Now <0 is generally
CL (I

o numerically.prescribed, so insertion of (6.3.35) into (6.3.34) determines ¢ ii

As a simple and pertinent example of thenno-elastic stress analysis

we consider a FRM which is described by the composite cylinder assemblage

model and is subjected to uniaxial stress in fiber direction and a temperature

rise. Thus for a cylindrical fiber reinforced specimen

O

_p(S) = %0 = const. (a)

T 1 (S) = o°ii nl (b) (6.3.36)

Tz(S)= T3(S)= 0 (c)

In accordance with (6.3.17-18) we consider the two separate boundary conditions

(s): o (a)

TI(S ) = (o ii nl (b) (6.3.37)

and

TZ(S) =T 3(S) : 0
(c)

O

(s)= _ (a)

TI(S) : T Z(S) =T 3(S) : 0 (b)

(6.3.38)
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The first problem is isothermal and its solution for the present model has been

O
given in chapter 3.5, appendix 2, important stresses being (14-17) with ¢

replaced according tO (18) by all/E I •

To solve (6.3.38) we considera single composite cylinder, fig. 3.5.1,

which is subjected to (6.3.38). In cylindrical coordinates

we have

x I =z, x 2 =rcos 8, x 3 =r sine

O

(_zz(H,r) = qzz (o,r) = c;11 (a)

q(1) (z ,a) = 0 (b)
rr

(6.3.39)

0

and the temperature is %0 throughout the cylinder. The problem is axially

symmetric and so OrB and u 8 vanish throughout the cylinder and the displace-

ments u and u are not functions of 8. Since in the previous general formula-
Z r

tion it was shown that u2 , u 3 are not functions of x I = z and since Ur depends

only on u2 and u3 , it follows that Ur is not a function of z. Consequently,

u = u (r) (6.3.40)
r r

Furthermore, by the general previous formulation

O
z (6.3.41)

z !l

0

where ¢ii is as yet unknown.
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Gornputation of strains from (6.8.40-41) and insertion into the thermo-

elastic stress strain law yields

du u
r r o

=-- - _ = e (a)
err dr ¢OO r zz 11

(6.3.42)

= 0 (b)
¢rO ¢Oz Crz

q aT ) o(7 = ne + _(e + ¢00 ) - (r_ A +2_ %0 (a)zz 1 rr

t'%

(7 = Z¢%± + (k +G T)rr 1 rr + (k-G T) See - (zaA+2kctT) o (b)

(6.3.43)

(700 = £¢°11 + (k - O T) _rr + (k +G T) ¢OO- (9_A+2kC_T) _0° (c)

(Tr0= °Oz _z 0
(d)

The only surviving equilibrium equation is

4(7

r__.._L.r" + °rr (700 = 0 (6.8.44)
dr r

Insertion of (6.3.42-43) into (6.3.44) yields the following differential equation

for u

r

d2u du
2 r r

r dr 2 + r dr Ur
= 0 (6.3.45)
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whose general solution is Br + C/r . Thus

U ----"

r

B 1 r + C1/r a < r <b, matrix (a)

B2r 0 _r _a, fiber (b)

(6.3.46)

Then matrix and fiber stresses are from (6.3.46) and (6.3.42-43)

(1)
= h + B1 + 2 1% 1)

O

°zz 1 - (nl _AI
(a)

c(1) = £ ¢I +2kl BI- 2GTrr 1 1 1 C1/r2- ( _i aAl+2klaT1 )_°° (b)

(i) = £ o +2]<:1 B1- 2G T C /r 2-(£ o_1+2k I i )_88 1 ¢Ii 1 1 1 _T (c) (6.3.47)

O O

o(2) =n2 ¢ +2Z2 B2 +2_2 (d)zz Ii - (n2 _A2 aT2) _p

o(2) (2) = z2 ¢c_rr = °OO 1 + 2k 2 B2 _ (½aA2 + 2k2aT2 ) o (e)

To find the constants B1, C 1, B2 the boundary condition (6.3.39b) and the

continuity conditions

(1) (2)
u (a)= u (a)

r r

o (1) (a) = 0(2)(a)
rr rr

(6.3.48)

are atilized. Insertion of (6.3.46-47) into these gives the equations
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2k I B 1 - 2GTI C1/b2

o

+ £i¢ii : (_i_Ai+Zki_yi)_° (a)

B I + Cl/a 2 -B2 =0
(b) (6.3.49)

2k I B1 - 2GTI Cl/a2 _2kzBz+(h i__2 ) o¢ ii

= [(hi_Ai + 2ki_Yi)- (_2_2 + 2kz_T2)]_°° (c)

o

which are three eqJations for the four unknowns B I, G I, B2 and ¢ ii"

a fourth equation (6.3.34) is used. Since in the present case

To find

¢22 + ¢33 = _ + =rr ¢88

2 B 1 matrix

2 B2 fiber

the last result following from (6.3.46) and (6.3.42a), equ. (6.3.34) assumes

the form

- 0 =_C_A+2K 02Zl Vl BI + 2_2 v2 B2 + n ¢ ii cLT <p (6.3.50)

where

n = n I v I + n2 v 2 (a)

+ 2k_ T =(nl_Al+2kl_Tl ) vi+ (n2_A2+2k2_T2) v 2 (b)

(6.3.5 i)
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v 1 = 1 - (a/b) 2 (c)

v2 = (a/b)2 (d)

O

Thus B1, C 1, B2, ¢ 11 are determined by the four linear equations (6.3.49),

(6.3.51) and all the stresses (6.3.47) become known. Analytical expressions

for the stresses are, however, cumbersome. It is better to solve (6.3.49),

(6.3.51), numerically.

It is quite easy to realize that the stresses in the composite

cylinder are the correct stresses in any cylinder of the assemblage. To see this

it is pointed out that on the surface r = b, c (1) (6.3 47b), is a constant
err

stress and u (1), (6.3.46a), is a purely radial displacement, of the form
r

u (b) = ¢ b, where ¢ and _(1) are the same for any cylinder with same a/b.
r r r rr

Therefore, the composite cylinder appears to an external observer as some

homogeneous cylinder with certain thermo-elastic properties. Now the argument

of par. 3.5.3, whereby all the cylinders can be fitted together by matching

displacements and tractions can be repeated verbatim.

It is also to be noted that by the present argument it is easily possible

to obtain the ETEC of the composite cylinder assemblage as apparent expansion

coefficients of any one composite cylinder, [6.5]. However, the general

method given previously, par. 6.3.1, is certainly much more attractive.



621

APPENDIX

Specific Heat

The effective specific heat of a composite is defined as the amount of

heat necessary to raise the temperature of unit mass (in the RVE sense) by unit

temperature.

constant average strain c
V

stre ss _
P

It is necessary to distinguish between the specific heat at

, and the specific heat at constant average

"4

It has been shown,[6.6] , that the two effective specific heats

of any composite are related by

* * * W *

c - c = C aij cLv p ij kl kl
tO

O

(i)

where _o is the absolute temperature and C ijkl and czij
are EEM and ETEC

at that temperature This relation is analogous to the relation between c and c
• v p

of a homogeneous elastic material.

For transverse isotropy or square symmetry, (1) assumes the alternative

form s

C - C =

v p

. .9 , , . . .2

(n a A + 4_ a A a T +4k a T ) %

2
2 * * W W

• 9t

LIEA a A + 4k _(_A aA + 0_T ) ]

(2)
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For a two phase transversely isotropic or square symmetric FM or FRM,

with isotropic phases, c is given by
P

m

C -C _2 - _l - *
P P = 3 ,- (3_- _A-Z_T)

- m i/K z- I/K i
0

(3)

* W

where CLA,, c_T are given by (6.3.10). This is simply shown on the basis of

the results given in [6.2]. With this expression, c becomes known from (2).
V

9¢ 9¢

Numerical values of c and c
p v

C = C = C =C

p v p v

are very accurately given by

(4)
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Table 6.3.1 Thermal Expansion Coefficients of Fiber and Matrix Materials

Fiber

Matrix

Material Thermal Expansion Coefficient (xlO 6)

o K o F

E-Glass

S-Glass

Carbon

Boron

A1203

SiC'

Mag ne slum

Aluminum

Epoxy (typical)

5.0 2.8

4.0 2.2

?

8.3 4.6

8.7 4.8

4.8 2.7

25.7 14.3

24.6 13.7

63 35
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7. i INTRODUCTION

One of the principal advantages of uniaxial FRIk4 as engineering ma-

terials is their potential to exploit the very high strength of fibers, such as

glass, boron and carbon fibers, to produce materials of very high axial

strength. Moreover, the fibers and matrix have low specific weights and

thus the specific weight of the FRIk4 is also low, as low as one third of the

specific weight of steel. (List of strengths and specific weights is given

in table 7.1.)

This attractive combination of high axial strength and specific weight

is often expressed by the specific (axial) stren qthwhich is defined as the

axial strength-to-specific weight ratio and has thus the dimension of length.

Indeed, the specific strength is the length of a vertically suspended cylinder

which fails under its own weight.

On the other hand, the transverse strength of uniaxial FRIVJ is in

general only of the order of the strength of the matrix in which the fibers

are embedded and is therefore by an order of magnitude smaller than the axial

strength. It follows that the axial strength potential of uniaxial FRM can be

exploited to advantage in structural members which are predominantly uni-

axially stressed, such as bars, struts, beams, rings and frames. In the

case of two dimensional structures, such as plates and shells, uniaxial

reinforcement is not adequate since the weak transverse direction would be

exposed to unbearable stresses. For such structures it is therefore advantageous

to employ biaxial or multiaxial reinforcement,e.g, in the form of laminates.
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Prediction of strength of FRM is evidently of foremost practical impor-

tance. Unfortunately, however, the subject is of such difficulty that on the

basis of present state of knowledge it does not seem possible to present a

coherent, reasonably rigorous development, as has been done so far in this

work. Consequently, the presentation of this subject here will be of more

qualitative than quantitative nature, ideas rather than mathematical develop-

ments will be emphasized and detailed derivations will not be given.

To appreciate the difficulties inherent in the problem of strength

prediction it is instructive to contrast this problem with that of prediction of

effective physical properties, such as effective elastic moduli, which has

been discussed in preceding parts. For the latter kind of problems the material

undergoes a process throughout which it may be assumed that the phase stress-

strain relations and the phase geometry do not change. This makes it possible

to define these problems mathematically. In the case of strength, however, the

process continues until failure which implies fundamental changes in material

behavior and phase geometry, e.g. plastification , large deformations and

crack formation. It is not generally known where and how these drastic

internal changes occur. Even if the local stress fields in the specimen were

known in minute detail during all stages of a loading process there would still

remain the problem of devising a meaningful failure criterion in terms of these

stresses and there would, of course, be no assurance that other variables,

in addition to stresses, would not have decisive influence.
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In order to perform any kind of failure analysis it is necessary to

assume a failure mechanism or failure mode, which describes the basic changes

inside the material which lead to failure. Such failure modes are chosen on

the basis of reasoning and/or experimental information. It should be em-

phasized that the same specimen will have quite different failure modes for

different kinds of loading. Thus the failure modes of a uniaxial FRM are very

d ifferent for axia Ite ns ion, axia I compress ion and iransverse load ing,

respectively. Reasonable failure modes for such loadings of uniaxial FRM,

and their associated failure analyses, are discussed in this presentation.

There arises the additional severe difficulty that reliable failure

modes for individual simple loadings cannot in general be simply combined

to lead to failure modes for combined loadings. Because of the absence of

sufficient information on such failure modes, present discussion of this

subject is limited to assumption of simple quadratic fa ilure criteria whose

coefficients have to be determined in terms of the assumedly known failure

stresses under simple loadings.

Finally, it is noted that the present discussion is confined to static

strength. Important topics such as impact and fatigue strength are omitted

since only a very small amount of reliable information on these subjects is

available at the present time.
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7.2 AXIAL STRENGTH

The axial strength of a uniaxial FRM is defined as the average uniaxial

stress in fiber direction which results in failure of a cylindrical specimen,

whose generators are parallel to fiber direction. There is a fundamental

difference between the failure modes for tensile and compressive loading

since in the latter case the fibers may buckle while in the former case

they do not. Therefore, tensile and compressive axial strengths are to be

discussed separately.

7.2.1 Tensile Strenqth

Let the usual fiber reinforced cylindrical specimen, with axis and

fibers in x I
O

direction, be subjected to uniform tensile stress Oll = o

on its end sections. There are no shear stresses on these sections and no

load on the lateral surface.

A popular formula for the failure stress

called "rule of mixtures" which asserts that

Ou = °(m)u Vm + °(f)uvf

°l i qu is given by the so-

(7.2.1)

where here and from now on, m and f denote matrix and fibers, respectively,

and _(rn) and o (f) are individually determined uniaxial tensile failure stresses
U U

of matrix and fibers respectively.
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The following discussion will serve to provide some justification for

(7.2.1) under certa in conditions.

O
that for any (7

By the average stress theorem it follows

and the specimen will fail. In that event the failure stress is

°u = _(m) Vm + _(f)uvf

fail. Then

_ _ (f)
(7 = (7
U U

(7.2.3)

-- (f) - (m)
where o is the section average fiber stress at fiber failure and (7 is

u

the average matrix stress at fiber failure.

If the matrix part of the section fails first, the load release is carried

by the fibers and the external load can be further increased until the fibers also

vf (7.2.4)

Since the fibers which are usually used are by an order of magnitude stronger

than tile matrix, the numerical difference between (7.2.3) and (7.2.4) is

ins ignifica nt.

- o _(m) v + _(f)vf (7.2.2)(711 =(_ = m

where Ii subscripts on phase axial stresses have been suppressed. The

averages in (7.2.2) are volume averages. It may be safely assumed that

phase stress surface averages are the same in any transverse section.

Therefore, allaverages in (7.2.2) may be interpreted as surface averages.

Now it should be borne in mind that in usual FRM the tensile strength

of fibers is very much higher than the matrix tensile strength, while volume

fractions are of same order of magnitude (see table 7.1 for some strength

values). If all the fibers in a section fail, the matrix will follow suit at once
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Now it may be assumed that the variation of fiber axial stress over

fiber areas can be neglected. (Compare e.g. composite cylinder assemblage

analysis, appendix 2, chapter 3.5, where fiber and matrix axial stress were

found to be constant). If there exists in addition a reasonably constant (little

scatter) fiber failure stress o(f) of individually tested fibers, then _(f) in
U U

(7.2.4) can be replaced by cr(f) .
u

Finally, since the first term in the right side of (7.2.3) is very small

in comparison to the second term, no significant error can result from replace-

ment of _(m) by O(um), the matrix failure stress. Thus there is obtained the

result (7.9.1).

The simple formula (7.2. i) is well verified experimentally in the case

of fibers which have reasonably constant strength, such as metal fibers.

See [7. i-3_ . It should be borne in mind that for small amount of fiber

reinforcement the matrix contribution may become important and then (7.2. i)

does not apply. For discussion of this effect see e.g. [7.3].

It is 6f some interest to note that in the event that both fibers and matrix

are ideally plastic, it follows by limit analysis methods that (7.2. i) is an upper

bound on the tensile strength, which in this event is defined as the average axial

stress at which average axial strain increases with no increase in average stress.

Of all the assumptions made in the establishment of (7.2. i) the most

crucial one is the assumption of constant fiber failure stress. For the usual

brittle fibers, such as glass, boron and carbon, which are used in practice,
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such an assumption is not realistic since it is found that the tensile strength

of such fibers is a random variable which is a decreasing function of the

fiber gage length. An explanation of this phenomenon is usually given in

terms of the occurrence of local fiber defects. Evidently, the expected number

of defects increases with fiber length and so a longer fiber has a higher failure

probability at some stress level than a shorter one.

The stochastic strength-length relationship of fibers has been incor-

porated into a cumulative damage-strength theory by Rosen L7.4-5J, whose

main ideas will be here discussed.

At the outset it should be borne in mind that (7.2.3-4) certainly remain

valid for any kind of fibers and that the numerical difference between them is

still negligible. But since o (f) is now a random variable, o(f) is unknown.
U U

It is not permissible to take as _(f)'"the experimentally obtained average
U

strength of fibers of arbitrary gage length since, as will be seen later, the

FRk4 contains fiber segments of very different lengths during the loading process

and thus the probability of further breakage will be different for segments of

different lengths.

A fundamental aspect of the theory is possible consequences of a fiber

break, Suppose that a fiber has broken; then the ensuing loss of tensile load

must be taken by the remainder of the section, and, clearly, the neighboring

fibers will experience most of the increase in load. Suppose that the neighboring

fibers break because of the load increase, thus producing increased load and

failure in their neighbors, etc. The result of such a chain reaction would be an
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expanding transverse crack which would lead to immediate failure of the

specimen. Such a transverse crack failure would imply a very undesirable

material in the case of brittle fiber reinforcement; for in such fibers some

fiber breaks will always occur at low stress levels and so the material

would fail at low axial stress. Whether or not such a failure mode ever

occurs is at present a matter of conjecture. It is assumed in the present

treatment that this does not happen.

A more important consequence of the occurrence of a fiber break

is the ensuing axial shear stress appearance at the fiber-matrix interface.

It should be noted that in an elastic specimen with continuous fibers 1such

shear stresses do not occur; see par. 3.5.1. They must, however, appear

near a fiber break from equilibrium considerations. For with increasing distance

from the break the tensile stress in the fiber increases from zero until at suf-

ficient distance it builds up to the original fiber stress before the break (because

of Saint Venants principle). Consideration of a fiber end, extending from break

to some axial distance, as a free body clearly requires axial interface shear

stress for equilibrium and, evidently, this stress decreases with increasing

distance from the break, fig. 7.2.1. The actual computation of the shear

stress, however, is an exceedingly difficult problem because of the presence

of neighboring fibers which must be taken into account. A number of approxi-

mate treatments have been given. For listing and description see e.g. [7.3],[7.8].

The shear stress concentration can cause debonding of the fiber from the

matrix. If the fiber becomes completely debonded its break renders it ineffective,
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since it can no longer transmit axial load. Such a situation would imply that

any fiber becomes ineffective after having sustained one break and the specimen

fails when all fibers are broken once. A specimen which fails according to

this debonding failure mechanism is not very strong (though stronger than

the one governed by the previously considered transverse crack failure

mechanism) since it merely acts as an ordinary bundle of fibers. Such

debonding should be prevented by insurance of proper matrix-fiber adhesion

and it is henceforth assumed that this is the case.

In the absence of transverse crack and fiber debonding failure modes

(*)
the fibers will react to load increase by progressive cracking. (For

experimental verification see [7.4].) Thus there are formed fiber segments of

different lengths whose further breakage probability is governed by the

(experimentally known) strength-length probability distribution of fibers.

A Weibull distribution has been chosen in [7.4] to represent this distribution

function.

The actual length of a broken fiber segment should not, however,

be used in the distribution function since, as previously explained, the end

parts of the segment are in a state of variable tensile stress because of the

vanishing of the stress at the ends, while in individually tested fibers the

tensile stress is uniform along the gage length. The broken fiber segment

thus has an "effective length" which is smaller than its actual length.

(*)
Such a failure mechanism has apparently first been

Parratt [7.6] .

suggested by
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This effective length has been chosen in [7.4] as _-2_ where _, is the actual

length and 6 is the distance from the broken end at which the fiber tensile

stress attains some fraction (e.g. 90%) of its original value. It is possible

to give other, less arbitrary, definitions of the effective length.

Statistical failure analysis has been carried out in [7.4] by subdivision

of the composite specimen into a chain of parallel layers (links) of equal

thickness 6 , following a general idea of G[icer and Gurland [7.7]. Assuming

that in any such layer the matrix axial strength is negligible relative to fiber

strength and that axial load concentration in fibers adjacent to a broken fiber

can be ignored, the layer becomes a simple bundle of fibers of length $ and the

probability of failure of a layer can therefore be expressed in terms of pro-

bability of fiber failure by statistical bundle theory. Thus the composite

specimen is now a chain of links (layers) whose individual failure probabilities

are known. The probability of failure of the composite is thus the probability

of failure of some link in the chain, which is established by statistical

chain theory.

Let the strength probability distribution of fibers of length _ be given

by the Weibull distribution

B -1 B)f(o) --_aB<_ exp(-£ _o (7.2.5)

where _, _ are two parameters to be obtained from fit to experimental data and

f(o ) is the probability that a fiber of length _ fails within a stress interval

[o , <7+ do J . (See [7.9] for theoretical reasoning for applicability of Weibull

distribution to fiber strength). The probability of failure of a fiber of length
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at stress smaller or equal to a is then given by the cumulative distribution

U

F(a) =ff(o) d_

O

Average fiber failure stress and standard deviation at length _ are

= (o__ )-i/B r (i + i/_ ) (a)

s = (a_)-i/B [ (i+2/B) - r2(i+i/_)] (b)

(7.2.6)

where ;" denotes the gamma function.

The most probable failure stress (y

predicted by the analysis, is

o -i/_
0 = vf (a B 6 e)U

0

U
of the composite specimen,

{7.2.7)

where e is the base of natural logarithms and 6 is infinitely smaller than

specimen length, which is an accurate assumption for usual FRM.

The above described approach to analysis of failure of FRM, though

approximate, is of major conceptual importance. Unlike the simplistic

approach leading to (7.2.1) , it recognizes the fact that brittle fiber strength

cannot be defined independently of fiber length. It is indeed seen that no

strength value appears in (7.2.7) . Instead there are the two parameters e and

which describe the probability strength-length distribution (7.2.5).

Comparison between strength values predicted by (7.2.1) and (7.2.7)

has been given in [7.5] in following fashion: Suppose that mean strength of
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fibers of some specified gage length _ , which has been obtained by exper-

iment, is used in (7.2.1). (This would appear reasonable to somebody who

believes in the universal validity of (7.2.1)). Neglecting for convenience

the matrix strength, the result is from (7.2.1) and (7.2.6a).

r -1/_ F
u = vf (__) (l+I/B) (7.Z.8)

A quantity which expresses the amount of scatter in fiber strength measure-

ment is the coefficient of variation u which is defined by

S
U -

U

and may be computed in terms of (7.2.6). The ratio o°/_ r as defined by
U U

(7.2.7-8) is plotted against s of the previously considered fibers of length 6,

for different ratios of _/6 , fig. 7.2.2 (taken from [ 7.5] ). It is seen that

for small coefficient of variation, (7.2.7) and (7.2.8) are very close. This is

reasonable, for a small coefficient of variation implies that fiber strength

is more or less constant, in which event (7.2.1) should be applicable. On the

other hand, for substantial coefficients of variation, thus considerable scatter

in fiber strength, (7.2.7) can become much larger than (7.2.8) and thus the

"rule of mixtures" (7.2.1) underestimates the composite's strength considerably.

For further work concerning the cumulative damage model the reader

is referred to [7.10-12 ]

Other aspects of tensile strength, suchasfracture mechanics and crack

propagation, are discussed in [7.13-14] , the case of discontinuous fibers-in

[7.3], [7.15 ],and interface effects on strength-in [7.16J .
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7.2.2 Compressive Strenqth

Analysis of compressive axial strength of uniaxial FRM has been

carried out on the basis of the assumption that a specimen fails in compression

when the fibers buckle. For experimental evidence to support this assumption

see e.g. [7.5J .

Analytical prediction of fiber buckling is evidently an extremely

complicated problem. Fiber lateral deflection is resisted in unknown fashion

by th_ matrix material in which they are embedded, this phenomenon being

reminiscent but not analogous to buckling of a column on elastic foundation.

Furthermore, fiber buckling modes are certainly influenced by the presence

of neighboring fibers.

Approximate two dimensional analyses by elastic energy methods

have been given in [7.5_ ,[7.173. Two idealized two dimensional buckling

configurations were assumed. In the first all fibers buckle in sine wave pattern,

the pattern of adjacent fibers being antisymmetric, or 180 ° out of phase.

This pattern was called "extensional mode. " In the second configuration

the sinusoidal patterns of all fibers are in phase. This was called the

"shear mode." The results of these approximate analyses are

_2 EmEfV f
OO = Vf __-_f) Extensional mode (a)

G
O m

= .-- Shear mode (b)

u l-vf

(7.2.9)
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7.3 TRANSVERSE STRENGTH

The transverse strength of a uniaxial FRM may be defined as the

average plane stress combination o 8 , in the transverse x2x 3 plane which

produces failure. Such average stress may be produced by application of

the boundary conditions

u1(S)= o (a)

or TI(S) = 0 (b) (7.3.1)

0

T0[(S)= o c_BnB (_,8 = 2,3 (c)

to the usual cylindrical specimen.

There is a fundamental difference between (7.3.1a,c) and (7.3.1b,c).

In the former case the specimen is in plane strain and the prevention of axial

deformation produces an average axial stress o
ii"

In that event application

of the average stress theorem, taking cognizance of the cylindrical external

geometry, shows that the average state of stress in the specimen is

m

[_, ]=
ij

In the latter case

°ii

0

m

°ii

0 0

O O

022 °23

0 0

°23 o33

(7.3.2)

vanishes and the average stress in the specimen is

- 0

(7.3.3)
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If it is assumed that failure for a certain composite specimen is uniquely

produced by some combination of the average stresses then the failure criterion

of the material may be written for the cases (7.3.2), (7.3.3), respectively, as

f(_ll' _22' _23' _33 ) = const. (a)

(7.3.4)

f(_22' °23' _33 ) = const. (b)

where f are some unknown functions.

m

It should be noted that all in (7.3.4a) is not an independent stress.

It would be independent in the event that the specimen were subjected to

(7.3.1c) and in addition toa uniaxial stress in fiber direction. In the plane

strain case, however, _ii depends on other average stresses and on material

effective properties. Thus fora transversely isotropic specimen which is

elastic until failure there is the relation

°ii = _A (°22 + _33 )

since _Ii vanishes. See (3.4.78a). Thus (7.3.4a) is in reality onlya

m

function of o
C_B"

Consequently, both failure criteria are of the form (7.3.4b),

the functional forms being different, however.

We now consider specifically the case of transversely isotropic

specimens. The concept of macroscopic transverse isotropy has here to be

somewhat revised in that it is assumed to apply to failure . By this is meant

that a failure criterion of type (7.3.4b) cannot depend upon the orientation
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m

of the plane coordinate system to which 0, are referred. Consequently,

(7.3.4b) must be [nvariant with respect to any coordinate rotation around

m

the x Iaxis and therefore only the invariants of 0,cLB can appear in (7.3.4b).

These invariants are

= + (a)
I1 0,22 0,33

-- -- --2

12 = 13 = 0,22 0,33- 0,23

We thus conclude that (7.3.4b) has the form

(7.3.5)

f(II, 12) = const. (7.3.6)

The principal average shear stress _ , at 45 ° between the principal

axes of <7 is given by
eB

- 1 V - °33 )2 - 2T =+ _ (022- +4o23 (7.3.7)

Define as usual

- 1 - 1 - -
o =-_- 0, - + ) (7.3 8)c_o_ 2 (°22 0,33

It follows from (7.3.5) and (7.3.7-8) that

I 1
=27

-2 - 212 = _ - T

(7.3.9)
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Thus (7.3.6) may be written as

m

f(o , T ) = const. (7.3.10)

It is thus seen that as a consequence of the macroscopic transverse isotropy

m

the failure criterion depends only on the two stress variables _ and T .

The preceding argument is of course familiar from the theory of ideal

plasticity for establishment of the form of the yield function (see e.g. [7.18]).

In that case the argument is carried further (in three dimensions) by the assump-

tion that isotropic stress does not produce plastic defonmations. A similar,

much less justified, assumption in the present case would be that plane-

isotropic average stress i.e.

o = o _ (7.3.ii)

does not produce failure, or rather, that itmust attain a much higher value

than shear stress T to produce failure. It is also to be noted that such an

assumption would be more plausible for isotropic compression than for isotropic

tension. If such an assumption were adopted it would follow that o does not

enter into the failure criterion, and so (7.3. i0) would reduce to the simple form

T = const. (7.3.12)

At the present time it is difficult to assess the accuracy of the approximation

(7.3.12).
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It is worthwhile to note that if the specimen is subjected to pure average

shear there can be no significant difference between the plane strain and plane

stress failure criteria since _11 would in that case be zero or negligible.

The quantitative establishment of a failure criterion is a matter of

considerable difficulty, even for the simple case of pure transverse shear.

Local elastic stress fields can be fQund for simple geometries, e.g. by

numerical analysis of regular square and hexagonal arrays. Analysis for

elasto-plastic stress fields does not seem to be available at all. The primary

question is, however, how to devise a failure criterion on the basis of

computed local stresses, and the answer to this does not seem to be known

at the present time.

A powerful well known method to find or to estimate the failure loads

of ideally plastic bodies is limit analysis. The method is applicable to FRM

if it is assumed that the matrix is incompressible ideally plastic and that

the fibers are rigid (*). It is thus primarily appropriate for the case of ductile

metal matrices, with sharp yield points, and for fibers which are sufficiently

stiff to be considered as rigid relative to a plastically yielding matrix.

While for matrices such as epoxy limit analysis is less justified, the results

predicted by it should nevertheless be of qualitative importance.

The FRM failure mode assumed by limit analysis is unrestricted plastic

flow of the matrix at constant load, this load being the failure load.

(,
"It is also possible to apply limit analysis when matrix and fibers are

ideally pla stic.
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The chief advantage of the method is in that it permits bounding of failure

loads by use of the theorems of limit analysis, see e.g. [7.19-20] , without

it being necessary to determine actual local stress fields. This approach

is thus reminiscent of bounding of effective elastic moduli by use of varia-

tional methods as discussed in chapters 3.6-7.

We consider a FRM with ideally plastic matrix and rigid fibers

which is subjected to (7.3.1b,c) According to limit analysis we define a

statically admissible stress field which has to satisfy the following conditions

_Cl# ILl.lL%.,,I,.l.%.21i _%J._.li%.l_._,i _ %.,_Uil',.4. LI,.LVL_ ,_ • _w#

(b) EqutlibriJm in the matrix.

(c) Stress resultants on any fiber vanish.

(d) Not violate the plastic yield condition of the matrix.

The boundary tractions associated with s_ch an admissible stress

field are lower bounds on the boundary tractions which produce unrestricted

plastic flow.

It is easy to show that boundary tractions which prodace failure in an

unreinforced plastic specimen are lower bounds on the failure tractions of a

reinforced specimen, [7.2 1-?.2 ] . As an example, let the matrix obey the

Mises yield condition

s.. s 2k 2
2 2

---- -- 0

U ij 3 y
(7.3.13)
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where s.. are the deviatoric components of the stress tensor and o is the
l] y

yield stress of the matrix in simple tension. Let the tractions (7.3.1c)

which produce plastic failure be denoted

u u

Toc : Oo_B n B (7.3.14)

Then by the lower bound theorem

u u ;<2 2 2s s > 2 =-- _ (7.3.15)
c_B c_B 3 y

u

where soc B

u
are the deviatoric components of o

o.B

If, in particular, the specimen is subjected to uniaxial stress in

x 2 direction with axial deformation prevented, thus

u (s)= 0
1

(a)

(7.3.16)

o n2 T3 (S)= 0 (b)Tz (S)= o.ZZ

then it follows from (7.3.15) that

u

_22 _ _ (7.3.17)Y

If the specimen is subjected instead of (7.3.16b) to pure transverse shear

T2(S) = o.23 n3 T 3(S) = o23 n 2

Then

u

o23 >- Oy/2 (7.3.18)



647

The results (7.3.17-18) are evidently quite trivial. Unfortunately,

however, better lower bounds do not seem to be available. It is also to be

noted that the bounds (7.3.15), (7.3.17-18) become invalid in the case of

fiber-matrix separation.

We now proceed to the problem of construction of upper bounds on

the failure loads and for this purpose it is necessary to define a kinematically

admissible velocity field, v , which has to obey the following conditions
a

(a) Incompressibility in the matrix.

(b) The normal component of _' on any internal surface must be
OL

continuous while the tangentmi component may be discontinuous.

(c) The normal component of v on fiber-matrix interface vanishes.
(1

Next there is defined a kinematically admissible multiplier m k as the

ratio between the internal plastic dissipation, as computed from v , and the
a

external (virtual) rate of work of the tractions (7.3. lc) on the velocities v
CZ t

O

[7.19]. Thenm ko aBn8 are upper bounds on the failure tractions (7.3.14).

Following a treatment by Drucker, [ 7.21] , it has been shown by

Hashin, [7.22_, that under certain circumstances the transverse plastic

strength of a FRM is precisely equal to the plastic strength of the matrix.

To describe this situation consider the principal shear stress direction

o
associated with o in (7.3 ic) Whenever it is possible to put a lonqi-

_B " "

tudinal plane through the FRM which cuts the transverse x2 x 3 plane
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in the principal shear direction and does not pass throuqh any fiber , the

FRM strenqth is equal to the matrix strenqth. Thus fiber reinforcement does not

produce increased strength in this case.

Fig. (7.3.1a) shows sucha situation schematically. It should be

emphasized that the underlying geometrical restriction on fiber placement is

severe and can hardly occur in FRM with randomly placed fibers and substantial

fiber volume fractions. On the other hand, in regular arrays such as hexa-

gonal and square arrays of identical fibers, there are many possibilities to

pass sucha shear failure plane through the matrix. Fig. (7.3.1b) shows this

for an hexagonal array and fig. (7.3.2) for two cases of square array. The

reader will have no difficulty to construct other such shear failure planes

for different geometries and different loadings.

The simple results obtained above support the experimentally observed

phenomenon that the transverse strength of a FRM with stiff fibers is of

the order of magnitude of matrix strength.

It is to be noted that in all cases described above the FRM fails in shear.

Thus the failure criterion is of type (7.3.11) . It is easy to realize that this

must always be the case for plane strain limit analysis of FRM, since by

hypothesis the matrix is incompressible and the fibers are rigid. Thus a plane-

isotropic external stress, (7.3.11), cannot, theoretically, produce deformation

and thus no plastic failure.



649

Drucker,[7.23], has givena plastic failure analysis fora special two

dimensional hexagonal geometry which may be interpreted as a FRM in which

the fibers are hexagonal and are surrounded by very thin layers of matrix.

The analysis is restricted to high fiber volume fractions. The results show

that for 70% fibers the FRM transverse uniaxial strength is only about twice

the matrix yield stress. Since the material with the ideal geometry considered

is much more resistant to plastic flow than a real FRM, this result also

indicates that stiff fiber reinforcement does not lead to substantial transverse

strength.

Shu and Rosen [7.247 and Shu [7.257 have applied limit analysis

methods to bound the transverse strength of FRM described by the composite

cylinder assemblage model. Upper bounds were constructed on the basis of

kinematic.ally admissible velocities whose functional form is that of elastic

displacements in composite cylinders, (3.6.85),par. 3.6.4. The simple

results (7.3.15) ,(7.3.17-18) were used as lower bounds.

The bounds obtained were not close, as may be seen by the following

numerical examples for pure transverse shear

U

023
v_ = 0.5 1 < __ < 2.45

2
¢ 2

U

_23

v2 =0.7 i -<---_/2 _ 5.0
Y

where v 2 is the fibers volume fraction.
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7.4 AXIAL SHEAR STRENGTH

The most general case of axial shear is defined by the boundary tractions

o n2 + oo n3TI(S) = o 12 13

O

T2(S) = o12 n I (7.4.1)

O

T3 (S) = o 13 nl

in which case the average stress tensor is given by

o0 o12 o13 i

0 0
0

O
12

t 0

Ol3 0 0

- q

0 o12 o 13

o12 0 0

o13 0 0

(7.4.2)

If it is again assumed that failure is uniquely produced by some

combination of average stress, then the failure criterioD in the present case is

f(_12' _13 ) = const. (7.4.3)

If the material is assumed to be transversely isotropic in failure then (7.4.3)

can depend only upon the invariants of (7.4.2) which are

I1 = 13 = 0

- -2

12 = - (o}2 + o13 )

(7.4.4)
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Since the principal shear stress _ in the x2x 3 plane is given by

- [ -2 -2

v = _ o12 + o13
(7.4.5)

it is seen that (7.4.3) reduces to

T = COnSt.

for transverse isotropy.

(7.4.6)

It is again advantageous to use limit analysis methods.

[7.22] , that also in the present case the matrix plastic shear strength is a

lower bound on the FRM shear strength. Thus

o /2 _ m (7.4.7)
y u

for any geometry.

It can also be shown that if a principal shear plane, thus an axial plane

in which T is situated, can be passed entirely through matrix, the FRM shear

strength is precisely the matrix shear str angth. Thus in that case

"r = _ /2 (7.4.8)
u y'

Examples for such situations can again be illustrated by figs. 7.3.1-2 where

the principal shear plane is now to be interpreted as the plane of principal

axial shear.

It may be shown,
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Shuand Rosen [7.24] have analyzed axial plastic shear strength on the

basis of the composite cylinder assemblage model and have obtained close

bounds. An example is given below

T
U

v9 = 0.7 1 < "/-75" < 1.19

Y

All the results quoted here indicate that axial shear strength of

FRM is essentially the same as axial shear strength of the unreinforced matrix.
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7.5 FAILURE CRITERIA FOR COMBINED LOADING

In the precedtng chapters we have considered FRM under separate

simple states of average stress . We consider now the case of general homo-

geneous traction boundary conditions

o (7 s i)T.(S) = o.. n. • •
l l] ]

which may thought to be applied to some cylindrical specimen.

average stresses are

O
(7 = O..

ij l}

Then the

(7.5 .z)

If we again adopt the assumption that failure is due to some combination

of average stress, then the failure criterion has the form

f(7311' 522' 7333' °12' 7323' 7313 ): const. (7.5.3)

It is again assumed that the material is transversely isotr0pic in failure,

the axis of transverse isotropyand fiber direction beingx 1. This transverse

isotropy implies that if the same numerical values of (7.. in (7.5.3), which

! I

produce failure, are applied in reference to a coordinate system x 1 , x 2 x 3

which is defined by any rotation about the x 1 axis, the specimen will fail.

If the failure stresses are transformed to the XlX2X 3 coordinate system, °ll

will remain the same but all others willchange. These transformed stresses

must however satisfy the failure criterion (7.5.3) since failure can evidently

not depend on the choice of coordinate system to which the failure stresses

are referred. Since this condition must be met for any rotation about the x 1 axis
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it is concluded that (7.5.3) can be at most a function of average stress

expressions which are invariant under a rotation about x 1. Those invariants

are the previously considered (7.3.5) and47.4.4) which may be taken in

the forms (7.3.9) and (7.3.5) , respectively. It is therefore concluded

that the transversely isotropic form of the failure criterion (7.5.3) is given by

f(_A' _' _T' _A ) = const. (7.5.4)

where

m

oA = Oli axial stress (a)

1

_33 ) transverse plane - isotropic_=T (?22
+ (b)

stress

(7.5.5)

- 1 _ - -_33)2 2_T = + -2- (o'22 - + 4_ 3 transverse principal shear
stress (c)

axial principal shear stress (d)

On the basis of the discussion given in chap. 7.2 it is seen that a

FRM has different uniaxial tensile and compressive failure stresses. The

same phenomenon can be expected,on physical grounds, for failure under

transverse plane-isotropic stress. Such inequality of tensile and compressive

failure stresses may be called Bauschin_er .effect in accordance with plasticity

theory nomenclature. In contrast the shear failure will evidently not depend
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upon the directions of the shear stresses. It is therefore concluded that (7.5.4)

\ -is an even function of _T and , but not of aA and "_.

The functional form of (7.5.4a) is of course unknown and its establish-

ment on the basis of material structure can be regarded at the present time as

a prohibitively difficult problem.

In the rather special case of elastic-ideally plastic fibers and matrix

the problem is more tractable. For this case Hill [7.262 has given an

approximate analysis of uniaxtal FRM under combined uniaxial and plane-

isotropic loading. McLaughlin and Batterman [7.27_ have investigated

general yield and failure conditions, including possibility of fiber buckling

and pull out. The most important case is , however, brittle fibers in which

case, as has been seen previously, transverse and axial shearing failure

modes are fundamentally different than axial tensile and compressive

failure modes. Therefore, the case of combined such loadings is one of

very great difficulty. Consequently, we shall limit ourselves to discussion

of the possible form of such a failure criterion on the basis of purely macro-

scopic considecations.

It is recalled that the fundamental assumption underlying the present

failure criterion is (7.5.3) which implies that failure is produced by some

combination of the average stresses. With this assumption the problem

becomes analogous to that of the establishment of failure criteria or initial

yield criteria in "homogeneous" bodies, as long as these are assumed to be
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dependent on the stresses only. For a recent comprehensive discussion of

such failure and yield criteria the reader is referred to Paul, [7.28] .

A popular form of criterion is a quadratic stress polynomial. Such a

criterion fora generallyanisotropic material has been proposed by Mises [7.293

in the context of plastic yielding and may be equally postulated for failure.

For a macroscopically orthotropic material the Mises criterion may be written

in the normalized form

_ _ m

- 2 - 2 +A33 2 a2 +A2 _2All all +A22 022 033 +AI2 °ii 2 3 2 033

- -2 - 2
- -2 + A 5 o2 + A 6 = 1+A13 _11 _33 +A44 _ 12 5 3 6a13

(7.5.6)

This form indicates that the quadratic stress polynomial is equal to a constant.

Then both sides are divided by the constant to obtain the present normalized form.

The constants in (7.5.6) must be found by subjecting the material to

various simple failure tests. Thus A44, A55, A66, can be determined from

pure shear failure experiments; All, A22, A33 can be found from uniaxial

failure tests while AI2, A23, AI3 must be determined from biaxial loading

failure tests. The last kind of tests are unfortunately quite difficult to

perform.

If it is desired to incorporate a normal stress Bauschtnger effect into

(7.5.6) there are two possibilities to do this. Firstly, the coefficients A II ......

AI3 may be interpreted as having different values for different kinds of loadings

such as uniaxial tension, uniaxial compression, biaxial tension-tension,
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tension-compression, etc. Secondly, linear normal stress terms may be

added to (7.5.6) , which then assumes the form

- -2 + - 2 - + - c3Alla121+A22 a22 A33 a33+A12 all _22 A23 a22 3

(7.5.7)

-2 - 2

.... 2 + a2 +A66 a+A13 all a33 + B1 _11 + B2 a22 + B3 _33+A44 a12 A55 3 13
=1

Evaluation of (7.5.7) for failure in uniaxial tension or compression

in x l,x 2,x 3 directions, respectively, and for 12, 23, 13, shear failures,

respectively, easily yields the results

1 1 1

A 1 = B -i - u -u i - u -u

(+)aii"(-)a ii (+)aii (_)a ii

1 1 1

A22 = B --u -u 2 - u -u

(+)a22'(-)a 22 (+)a 22 (-)°22

(7.s. 8)

1

A 3 = B3 = .--.3 -u -u -u

(+) c 33"(-) a 33 (+) a 33

1 1

(-)
-U
C_

33

A44 = A55 =

12

2
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-LI -U

where (+)Oli , (_)c_ etc. are tensile and compressive uniaxial failure stresses,

respectively, and -u etc. are shear failure stresses in pure shear loadings.
<;12

Unfortunately, AI2, A23 and AI3 still have to be evaluated in terms

of biaxial stress failure values and each must assume four different values

for different loading regimes, in order to cope with biaxial Bauschinger effect.

The failure criteria (7.5.6-7) are frequently simplified by the assump-

tion that isotropic (e.g. hydrostatic) stress does not produce failure. With

this assumption (7.5.7) assumes the form

C12(_11 - %2 )2 +C23 (722- 533 )2 + C13(_11- 533 )2 +

.... 2 2 + -2
+ B2 o + B 3 + o + _ A66 _ = 1+ BI °ii 2Z 033 A44 12 A55 23 13

(7.5.9)

where

2C12 = All +A22 - A33 (a)

2C23 = A22 + A33 - All (b)

2C13 All += A33 - A22
(c)

(7.5.10)

B1 + B2 + B3 = 0 (d)

It should, however, be borne in mind that the assumption that failure does

not occur under isotropic stress is much less justified for anisotropic materials

than for isotropic materials. In the latter case justification may be provided

by the fact that isotropic stress produces isotropic strain and vice versa.
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There is thus no shear stress or shear strain anywhere, and if it is assumed

that failure is primarily associated with shearing on some plane, the assumption

is not unreasonable. In an anisotropic material, however, the situation is

different. Here isotropic stress produces a nonisotropic state of strain.

Thus shearing strains do occur on some planes and it is possible that they

may lead to failure for values of isotropic stress which are not extremely

elevated. It would seem therefore that the validity of the simplification

(7.5.9-10) merits further investigation.

It is seen that the advantage of _,".5._j__v_,.....(7.5.7), _._-.._*h_.....

it is no longer necessary to determine coefficients of mixed products from

biaxial tests. On the other hand, there arises the difficulty that (7.5.10d)

will not in general be fulfilled by the values of B I, B2, B3 in (7.5.8).

Hoffman [7.30_ has shown good agreement between (7.5.9) and

experimental data. He has, however, disregarded the requirement (7.5.10d),

without which (7.5.9) is inconsistent.

Hill [7.31_has used (7.5.9) without the linear terms as yield criterion

for orthotropic ideally plastic materials. Tsai [7.32_ andAzziand Tsai [7.332

have used the same criterion for failure of FRM and have reported good agree-

ment with experimental results. They have chosen to account for Bauschinger

effect by assigning to coefficients different values in tension and compression

regimes. If this approach is adopted then (7.5.9) assumes the form
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O12(Oll - 522 )2 + 023(022 - _33 )2 +O13(Oll - 533 )2

-2 -2 -2

+A44 _12 +A55 °23 +A66 °13 = 1

(7.5. ll)

The coefficients A44, A55, A66 are still given by the last of (7.5.8) but

the coefficients C12, C23, 013 must now be assigned a variety of different

values in order to cope with all possibilities of combined normal stress

failure, e.g. tensile-tensile-tensile, tensile-tensile-compressive, etc.

Returning now to the failure criterion (7.5.4) for macroscopically

transversely isotropic materials, it is easily realized that it is a special

case of failure criteria for orthotropic materials. Thus if it is assumed

quadratic, its most general form for x 1 axis of transverse isotropy, is obtained

-U -U . -U "U . -U -U

from (7.5.7-8) by setting the pairs (+)c_22, (+)033 , (_)a22 , (_)a33, (_12,a 13

equal. Then (7.5.7) reduces to

- -z +-2 1 - - -All C_l +A22(°22 c_33) +A12 1 (022 A23 o22 c_33

+ B1 °11 + B2(° + _33) (_2 -2 -2 = 122 + A44 12 + o 13 ) + A55_23

(7.s. 12)

It is easily seen that if (7.5.4) is assumed quadratic in the shear

stresses and quadratic and linear in _A and _, the same form as (7.5. ii)

will result on substitution of (7.5.5).

The simplification to transverse isotropy does not mitigate the problems

which arose in fitting orthotropic quadratic failure criteria to experimental data
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with Bauschinger effect. The choices are again: use of (7.5.12) with multiple

values of AI2, A23; simplification of form (7.5.9) which would imply that

B 1 + 2B 2 = 0, which condition is not generally fulfilled; or choice of form

(7.5.1 i) which leads to a multiplicity of values for normal stress coefficients.

The form of the failure criterion for a uniaxial FRM enters naturally

into the problem of the determination of the strength of a laminate. As

has been seen in chap. 3.10, a lamina ina laminate is generally in a

complex state of stress. As a first approximation the stress normal to the

lamina, 033, can be neglected and as a second approximation the shear

stresses q13' 023 can be considered of secondary nature. So a single lamina

is at least in the plane state of stress qll' q22' c_12 which varies linearly

through its thickness, according to plate and shell theory.

The fundamental problem which arises is: given the failure criteria of

single laminae (it is well to remember that we know little about them), to

establish the failure criterion of the laminate.

Two approximate approaches, of similar philosophy, to this problem

have been given by Tsai and Azzi [7.34] and by Dow and Rosen [7.35] .

It is assumed in both approaches that when a certain lamina, or group of laminae,

fails, its further response to continued loading is changed in some fashion. In

[7.34] the changed response was treated by modification of lamina elastic

stiffnesses, in that it was assumed that certain stiffnesses reduce to zero

after lamina failure while others remain operative. In [7.35] itwas assumed

that after lamina failure certain stress components in the lamina remain at their
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failure levels while others can continue to increase. The predictions of both

approaches are in good agreement with experimental data for laminate

failure.
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Table 7.1.] Specific Weights and Tensile Strengths of Fiber and Matrix
Materials

Fiber Material

Matrix

E-Glass

S-G la s s

Carbon

Boron

A1, 0 a

Si C

Magnesium

Aluminum

Epoxy (typical)

Spec3ific Weight 3
gm/cm lb/in

2.54 o0917

2.48 .0895

1.9 .0686

2.53 .0915

4.6 .!43

3.2 .123

I. 75 .063

2.72 .098

1.38 .050

Tensile Strength

ksi

500

650

300

400

1200

1400

35

70

10
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Latin Symbols

a u

A-

A 876'Apq -

b-

B ,B -
(1876 Pq

c -

C --

P

C m

V

C __

C

12

Cijkl -

e

Cij kl -

Cij kl (t)-

n m

radius of circular fiber

area of transverse cross section of cylindrical specimen

membrane elastic stiffness tensor of laminated plate

radius of composite cylinder

membrane/flexure coupling st iffness tensor of laminated plate

fiber volume fraction; wave velocity, pt. 4

specific heat at constant stress

specific heat at constant strain

boundary of transverse section of cylinder

phases i, 2 interfaces in transverse section of cylinder

elastic moduli tensor

elastic moduli in six-by-six "engineering

elastic moduli tensor, pt. 4

" notation

relaxation moduli tensor

time derivative operator, pt. 4

flux vector, (thermal, electric, magnetic)
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Dijkl -

D ,D
pq _Sv 6-

e,,

1]

e(t) -

eA(t ) -

e T (t) -

E-

$(t)-

ET -

E I ,E 2 ,E 3 -

f( )-

F( )-

F. -

i

7 -

{g] -

gA(t)-

gT(t) -

complex moduli tensor

flexural stiffness tensor of laminated plate

deviatoric part of strain tensor

isotropic Young's creep compliance

axial Young's creep compliance I

transverse Young's creep compliance

isotropic Young's modulus

isotropic Young's relaxation modulus

axial Young's modulus

transverse isotropy

transverse isotropy

transverse Young's modulus

Young' s moduli, orthotropy

probability density function, pt. 7

cumulative probability function, pt.

body force vector

Fourier transform operator

phase geometry, symbolic

axial shear creep compliance

transverse shear creep compliance I

transverse isotropy
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G m

G(t)-

e G _

G A -

GA(t) -

G T -

G T (t) -

G T -

G12

h-

h ,h -
m n

H-

H (t) -

_H., H. -
1

I-

I1 ,I 2 ,I 3 -

!, Iijkl -

I(t)-

isotropic elastic shear modulus

isotropic shear relaxation modulus

isotropic elastic shear modulus, pt. 4

axial shear modulus

axial shear relaxation modulus

transverse shear modulus

transverse shear relaxation modulus

second shear modulus, square symmetry

,G23 ,G13- shear moduli, orthotropy

plate thickness

reference heights of layers in laminate

height of cylindrical specimen

Heaviside unit step function

intensity vector (thermal, electric, magnetic)

moment of inertia of section

torsional rigidity divided by shear modulus

invariants of stress tensor

fourth rank symmetric unit tensor

isotropic bulk creep compliance

transverse isotropy
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l(t) -

k-

e

isotropic shear creep compliance

transverse bulk modulus, transverse isotropy;

plane strain bulk modulus, isotropy

same as above, pt. 4

-

K-

K(t) -

transverse bulk creep compliance

isotropic elastic bulk modulus

isotropic bulk relaxation modulus

_C. m

M

M

n, m

i

N

p m

go-

elastic modulus, transverse isotropy;

length of beam or tiber

Laplace transform operator

number of phases;

elastic modulus

moment tensor in plate

components of outward normal

elastic modulus, transverse isotropy

membrane force tensor

isotropic part of stress polarization tensor;

transverse load per unit area of plate;

Laplace transform variable

in plane loads per unit area of plate

p.. N

I]

p., --

i]

stress polarization tensor

admissible stress polarization
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r(O -

R-

R
ij kl

S -

S(t)-

S --

ij

S-

S -
12

Sijkl -

11

S (t)-
ij kl

proba bil ity

one point probability

two point probability

load per unit length of beam

deviatoric part of stress polarization tensor

radial coordinate

radial vector

axial/transverse creep compliance, chap. 4.3

region

complex compliances tensor

standard deviation

transverse/axial creep compliance, chap. 4.3

deviatoric part of stress tensor

bounding surface

phases 1, 2 interfaces

elastic compliances tensor

elastic compliances tensor in six-by-six "engineering

creep compliances tensor

" notation
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-.,(y

V -

V2C -

V N

C

V, --

1

V-

W -

W ¢_

W O _

X.

1

E-

Yi-

Z -

stress energy

stre ss e nerg y functional

volume fraction

fiber volume fraction relative to composite cylinder

volume fraction of composite cylinders relative to composite

velocity vector

volume

transverse deflection of beam or plate

elastic strain energy density

elastic stress energy density

cartesian coordinates

position vector from origin

local cartesian coordinates

axial coordinate, cylindrical system

Greek Symbols

isotropic thermal expansion coefficient

t]
thermal expansion tensor

__

axial thermal expansion coefficient }transverse

i
tra nsverse therma I expa ns ion c oeffic ient'

isotropy
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_R-

_ij -

-

T _

ij kl

6 (t) -

6 -

ij

-

V-

2
V -

¢ij -

'q --

K -
O.

ratio, fiber to matrix shear modulus

ratio, fiber shear modulus to real part of!matrix complex shear modulus

strain rate tensor

transform domain (TD) shear modulus;

gamma function

transform domain (TD modulitensor

deflection; loss angle;

ineffective fiber length

time dependent deflection;

time delta function

three dimensional Kronecker delta

two dimensional Kronecker delta

del operator

Laplace operator

isotropic part of strain tensor

strain tensor

viscosity coe fficient

angular coordinate, cylindrical system

square root of minus one

transform domain (TD) bulk modulus

plane Fourier transform variables

plate curvature tensor
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U.., m

1]

"0 -

_j -
A

_)

T

"Oij -

t/j

elastic Lame' modulus, isotropy

isotropic conductivity;

statistical coefficient of variation

conductivity tensor

axial conductivity

transverse conductivity

I transverse isotropy

isotropic elastic Poisson'

axial Poisson's ratio

transverse Poisson's ratio

s rat io

transverse isotropy

Poisson's ratios of orthotropic material

_T-

p

U-

0",,

1]

(_ --

1]

q- --

isotropic resistivity

axial resistivfty

transverse re s ist ivity

transverse isotropy

density

isotropic part of stress tensor

stress tensor

admissible stress field

time; shear stress

plane harmonic function; potential;

temperature

circular frequency
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Subscripts

c - compo s ire c ylinder a s semblage

i,j,k,l,4,m,n,r,s -range over 1,2,3

(_,B,y,8- range over 2,3;

over 1,2 in chap. 3. I0

1 - phase I,

2 - phase 2,

(-) - lower bound

(+) - upper bound

,i - partial derivative with respect to x.
1

indicates matrix in the case of Fiber Reinforced

indicates fibers in the case of Fiber Reinforced

Material

Material

S uperscript s

I - imaginary part of

R - real part of

th
(m) - m phase

(i) - phase 1

(2) - phase 2

* - effective property

Overscripts

- time derivative

- average
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Fourier transform, Append. to Chap. 3.7;

Laplace transform, Pt. 4

admissible field, Pt. 3;

complex, Pt. 4



69O

LIST OF ABBREVIATIONS

CCA -

EC -

ECC -

ECM -

EEC -

EEM -

ERM -

ETEC -

FEA -

FM -

FRM -

FT -

LT -

RVE -

SH -

SI -

SNH -

STI -

TD -

Composite Cylinder Assemblage

Effective Conductivity

Effective Creep Compliance

Effective Complex Modulus

Effective Elastic Compliance

Effective Elastic Modulus

Effective Relaxation Modulus

Effective Thermal Expansion Coefficient

Fiber Embedding Approximation

Fibrous Material

Fiber Reinforced Material

Fourier Transform

Laplace Transform

Representative Volume Element

Statistically Homogeneous

Statistically Isotropic

S ta tis tica lly NonHomogeneous

Statistically Transversely Isotropic

Transform Domain
CR-!974 -- 3_


